Low light night vision systems based on I2 tubes have been expanding rapidly over the past few years, due to a combination of the growing advancement of this technology and the increased pressure in the current climate. The design of a single optical bench able to fully characterize night vision devices is presented into this paper, focused more specifically on spot defects and goggle axes parallelism tests. These criteria are indeed very important: misalignment between the two binocular images may be one source of visual fatigue and could degrade task performance of the night vision user, and spot defects can act as visual distractions and may be large enough to mask critical information pilots need to conduct normal night vision operations. Thanks to HGH’s IRCOL bench, these two tests are integrated on the same support. Spot defect measurement utilizes machine vision algorithms to determine the size and location of the defects, and the parallelism measurement identifies the angular misalignment between the two channels under test. The spot defect test has also been completely automatized compared to the only visible test previously available All these results will be compiled and directly integrated into a computer-generated report that can be easily used for quality control or for maintenance applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.