Knowledge of optical constants in the vacuum ultraviolet (VUV) range is vital for the semiconductor industries to develop new materials with the required optical properties for lithography. However, the optical constants for most materials in this range are not precisely known because corresponding measurements are demanding in many regards. Measuring the s- and p-polarized reflectance for different materials from 36 nm- 220 nm, we have calculated the optical constants and studied the effect of polarization in the sensitivity of the optical constant determination in the VUV spectral range
Optical constants of materials are essential for predicting and interpreting optical responses, which is crucial when designing new optical components. Although accurate databases of optical constants are available for some regions of the electromagnetic spectrum, for the vacuum ultraviolet (VUV), the extreme ultraviolet (EUV), and soft x-ray spectral ranges, the available optical data suffer inconsistencies, and their determination is particularly challenging. Here, we present a selected example of ruthenium (Ru) for the determination of optical constants from the VUV to the soft x-ray spectral range using reflectivity measurements performed with synchrotron radiation. The subtleties of reflectivity measurements are discussed for a large wavelength range, from 0.7 to 200 nanometers.
EUV scatterometry can retrieve geometrical information from nanoscale grating structures through elastic scattering of EUV radiation and the evaluation of the diffraction intensities. Its geometry and energy range place it in between grazing incidence x-ray scattering (GISAXS) and optical critical dimension (OCD). PTB recently commissioned a new scatterometry setup for the EUV and soft x-ray region that can address sample areas below 100 × 100 μm size by using a comparably steep, grazing angle of incidence of up to 30°. At the same time, the full cone of exit angles of 30° can be detected such that also the higher orders can be recorded in scatterometry measurements. It has been commissioned at PTB’s monochromatic soft x-ray beamline at the synchrotron radiation facility BESSY II and can also be used for simultaneous x-ray fluorescence detection. Its great tunability and energy resolution allows to scan across absorption edges of the relevant semiconductor materials to increase the contrast between different materials. The nanoscale geometry of modern transistor designs features different materials and structure sizes in the single digit nanometer range. Using the information wealth of spectrally resolved scatterometry measurements from the new setup, we present data and first geometrical reconstructions of selected, complex, industry-relevant design studies. The geometrical reconstruction of these structures relies on precise measurements, modelling of the scattering process, and statistical data evaluation methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.