The Phase-Only Spatial Light Modulator (PLM) is a piston-mode design of the Digital Micromirror Device (DMD) that Texas Instruments DLP® Products has been developing in recent years. While the manufacturing of the PLM shares many of the same process steps of the traditional DMD, the optical system integration of the two devices are fundamentally different. As a result, new optimization is needed to maximize the performance of the PLM based on the device characteristics. This paper covers the optimization of key pixel parameters – array fill factor, mirror flatness, mirror tilt – and generally how the parameters affect a device performance metric we call Zeroth-Order Efficiency. The various improvements are modeled to ascertain expected performance gains and at what point the performance benefits achieve asymptotic behavior. Theoretical and empirical results are shown for the improved key pixel parameters and their corresponding gains made to Zeroth-Order Efficiency.
We develop a remote hyperspectral (HS) imaging work flow that relays spectral and spatial information of a scene via a minimal amount of encoded samples along with a robust data reconstruction scheme. To fully exploit the redundant and multidimensional structure of HS images, we adopt the canonical polyadic (CP) decomposition of multiway tensors. This approach represents our HS cube in a compressive manner while being naturally suitable for the linear mixing model, commonly used by practitioners to analyze the spectral content of each pixel. Under this low CP rank model we achieve frugal HS sensing by attenuating and encoding the incoming spectrum, thereby faithfully capturing the information with few measurements relative to its ambient dimensions. To further reduce the complexity of HS data, we apply image segmentation techniques to our encoded observations. By clustering the pixels into groups of endmembers with similar structure, we obtain a set of simplified data cubes each well approximated by a low CP rank tensor. To decode the measurements, we apply CP alternating least squares to each set of clustered pixels and combine the outputs to obtain our final HS image. We present several numerical experiments on synthetic and real HS data with various levels of input noise. We demonstrate that the approach outperforms state of the art methods, achieving noise attenuation while reducing the amount of collected data by a factor of 1/14.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.