We explore the use of scintillation detectors coupled with silicon photomultipliers (SiPMs) as position sensitive hard x-ray spectroscopic detectors for potential applications in the field of high-energy astrophysics. X-ray photons on interaction with scintillation crystals generate optical photons and the distribution of these scintillation light photons is captured with the array of SiPM pixels, providing the spectral and spatial information of the incident x-ray photons. As the position is estimated by fitting the distribution of optical photons, it should be possible to achieve spatial resolution lesser than the pixel size. Development of two detector modules with CsI (Tl) and CeBr3 scintillators coupled with different sets of array of SiPM pixels is presented here. Spectral and spatial resolutions of both detector modules are characterized with experiments using x-ray lines from laboratory radioactive sources. It is shown that a faster scintillator with an array of low-noise SiPM pixels provides better spectral and spatial resolution and it is possible to achieve subpixel spatial resolution with such a detector module.
There is growing interest in high-energy astrophysics community for the development of sensitive instruments in the hard X-ray energy extending to few hundred keV. This requires position sensitive detector modules with high efficiency in the hard X-ray energy range. Here, we present development of a detector module, which consists of 25 mm x 25 mm CeBr3 scintillation detector, read out by a custom designed two dimensional array of Silicon Photo-Multipliers (SiPM). Readout of common cathode of SiPMs provides the spectral measurement whereas the readout of individual SiPM anodes provides measurement of interaction position in the crystal. Preliminary results for spectral and position measurements with the detector module are presented here.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.