Fluorescence Molecular Tomography (FMT) is one of the most important preclinical research techniques, which can obtain three-dimensional reconstruction of tumors in mouse in vivo. However, the ill-posedness of FMT makes its reconstruction a challenging problem. Therefore, more effective, robust, and accurate reconstruction methods are needed to be developed to solve the FMT reconstruction problem.
In this paper, a reconstruction method named multipath subspace pursuit (MSP) is applied to solve the FMT problem. At the end of an iteration, the MSP method creates several candidate support set. Through evaluating the normal of final residual vector, the best candidate can be selected as the final support set. Then the support set is used for reconstructing sense matrix to achieve the goal of FMT reconstruction.
In order to verity the reconstruction result of the proposed MSP method, the simulated experiment of triple fluorescent sources and quantitative analyses of position error and relative intensity error for the experiment have been conducted. The MSP method obtains satisfactory results, and the source position error is below 1 mm. Moreover, the computation time of the MSP method is about one order of magnitude less than iterated shrinkage with the L1-norm (IS_L1) method. The MSP method not only can obtain the result of robustness but also can reduce the artifacts in the background. The above results revealed the MSP method for the potential FMT application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.