The wavelet transform is a powerful tool for capturing the joint time-frequency characteristics of a signal. However, the resulting wavelet coefficients are typically high-dimensional, since at each time sample the wavelet transform is evaluated at a number of distinct scales. Unfortunately, modelling these coefficients can be problematic because of the large number of parameters needed to capture the dependencies between different scales. In this paper we investigate the use of algorithms from the field of dimensionality reduction to extract informative and compact descriptions of shape from wavelet coefficients. These low-dimensional shape descriptors lead to models that are governed by only a small number of parameters and can be learnt successfully from limited amounts of data. The validity of our approach is demonstrated on the task of automatically segmenting an electrocardiogram signal into its constituent waveform features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.