Solar irradiance variability due to stochastic cloud dynamics can cause unwanted fluctuations in the output voltage of photovoltaic (PV) modules. These dynamics must in particular be understood at very-short and short time scales if grid interconnection and generation/load balance requirements are to be maintained for PV distributed across the grid edge. Using a recently-created database for Ottawa, Canada, a 6-month longitudinal study was conducted with a specific focus on cloud dynamics. A spectral pyranometer was used to derive full-range spectral and broadband global horizontal irradiance under all sky conditions every 250 ms. Exploiting the infrared (IR) measurement channel of this software-augmented multi-filter radiometer allowed the cloud dynamics to be probed across time scales ranging from the subsecond to minutes. Seven distinct sky conditions were self-consistently determined without sky imaging. Probability distributions, established via kernel density estimates (KDE), allowed the statistical dependence of these conditions on the spectral clear-sky index to be found. The stochastic nature of the spectral irradiance variability was probed using spectral clear-sky index increments, over time steps that were found to span three distinct variability regimes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.