At high current densities, the characteristics of organic laser diode structures are strongly influenced by a variety
of loss processes such as bimolecular annihilations, field-induced exciton dissociation and induced absorptions
due to polarons and triplet excitons. Here, we investigate a TE2-mode organic double-heterostructure laser diode
by numerical simulation. The electrical properties are described using a numerical drift-difusion model and the
optical characteristics are modeled using a transfer matrix method. When annihilation processes are included,
a threshold current density of 8.5 kA/cm2 is derived for the considered device. Laser operation is not achieved
when field-induced exciton dissociation is considered. For induced absorptions, maximum relative cross sections
of 9.6 × 10-8 for polarons and 1.4 × 10-4 for triplet excitons have been calculated, which would still allow laser
operation. For higher relative absorption cross sections, laser operation is suppressed for all current densities.
Furthermore, the impact of field quenching is analyzed and the separation of singlet excitons from polarons and
triplet excitons in the time domain is studied.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.