This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The market for UV LEDs is experiencing a rapid growth, also driven by the need for effective and efficient disinfection systems. Before UV LEDs can be widely accepted by the market, they need to demonstrate a high reliability, with lifetimes of several thousands of hours. Several physical processes may limit the reliability of UVB and UVC LEDs, resulting in a loss in efficiency during long term operation.
This paper aims at discussing the most relevant processes that can lead to the degradation of UVB and UVC LEDs, with focus on: (i) instability of the electrical properties, which may result in gradual changes in the turn-on voltage of the devices during long-term operation. (ii) The generation of defects within the active region of the devices, with consequent increase in the Shockley-Read-Hall non-radiative recombination rate. Optical spectroscopy is found to be very effective for the identification of deep (midgap) traps during operation of the devices. (iii) trap states near the junction, with consequent impact on trap-assisted-tunneling of the current-voltage characteristics. (iv) the propagation of point defects, especially impurities, and accumulation of charges at heterointerfaces, that can reduce the carrier injection efficiency, thus leading to a decrease in the emitted optical power.View contact details
No SPIE Account? Create one