The Multi Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph on the Very Large Telescope Unit Telescope 4. The MUSE adaptive optics observing capabilities include a wide field (1 square arcmin), ground layer seeing-enhanced AO mode (WFM-AO), and a narrow field (7.5”×7.5”), laser tomography AO mode (NFM-AO). The MUSE AO observations use four laser guide stars (4LGS) to correct the atmospheric turbulence. The MUSE AO observations routinely improve image quality by a factor of 2 in the seeing-enhanced wide field (WFM-AO) observations and deliver image quality down to 50-60 milliarcsecond (mas) in the laser tomography AO (NFM-AO) mode. The 4LGS and AO systems at UT4 are stable, but there is still some chance that one of the lasers or Wavefront Sensors (WFS) is out of service, leaving us with 3LGS. In the last few years, we have successfully commissioned and characterized the MUSE AO degraded mode (3LGS mode) for both MUSE WFM-AO and NFM-AO modes. In this paper, we present the commissioning activities, the procedure developed to switch between 4LGS and 3LGS mode, and the performance characterization of the MUSE-NFM AO degraded mode.
Embryo quality is a crucial factor affecting live birth outcomes. However, an accurate diagnostic for embryo quality remains elusive in the in vitro fertilization clinic. Determining physical parameters of the embryo may offer key information for this purpose. Here, we demonstrate that digital holographic microscopy (DHM) can rapidly and non-invasively assess the refractive index of mouse embryos. Murine embryos were cultured in either low- or high-lipid containing media and digital holograms recorded at various stages of development. We showed that DHM can detect spatio-temporal changes in refractive index during embryo development that are reflective of its lipid content. As accumulation of intracellular lipid is known to compromise embryo health, DHM may prove beneficial in developing an accurate, non-invasive, multimodal diagnostic.
Point-diffraction interferometers are a class of wavefront sensors which can directly measure the phase with great accuracy, regardless of defects such as vortices and disconnected apertures. Due to these properties, they have been suggested in applications such as cophasing of telescope segments, wavefront sensing impervious to the island effect and high-contrast AO and imaging. This paper presents an implementation of this class of interferometer, the Calibration & Alignment~WFS (CAWS), and the results of the first on-sky tests in the visible behind the SCAO loop of the CANARY AO experiment at the William Herschel Telescope. An initial analysis of AO residuals is performed in order to retrieve the SNR of interference fringes and assess the instrument's performance under various observing conditions. Finally, these results are used to test the validity of our models, which would allow for rapid implementation-specific modelling to find minimum-useful flux and other CAWS limits.
The Canary Hosted Upgrade for High-Order Adaptive Optics is an experimental test-bench for high-order SCAO, in R-and I-bands, designed to utilize the Canary experiment at the 4.2m William Herschel Telescope. Chough consists of a pick-off that diverts light from after the 2nd DM in Canary up onto a custom breadboard which hosts the Chough sub-systems. These consist primarily of a ADC, an optical relay, a 1020-actuator DM, a 31 x 31 SH-WFS, and finally a Science Imager. Each of these sub-systems is detailed, with emphasis on interesting and unusual features. As an integrated experiment, the October/2016 on-sky engineering run is first described and then the re-integration of Chough in the laboratory during 2017 as a standalone instrument. In its latter guise, it is a host for additional instrumentation dedicated for high-order AO. An example briefly described is the CAWS interferometer, designed to produce absolute phase residual measurements over a wide chromatic bandwidth (paper #10703-212 in this meeting). We report on consequences of design decisions made for cost reasons, the bench’s fundamental performance, lessons learnt during the various stages of the project so far, and end by describing plans for Chough’s exploitation in the future for high-order SCAO research in the visible and near-IR.
Free-atmosphere, and surface-layer optical-turbulence have been extensively monitored over the years. The
optical-turbulence inside a telescope enclosure en the other hand has yet to be as fully characterized. For this
latest purpose, an experimental concept, LOTUCE (LOcal TUrbulenCe Experiment) has been developed in
order to measure and characterise the so-called dome-seeing. LOTUCE2 is an upgraded prototype whose main
aim is to measure optical turbulence characteristics more precisely by minimising cross-contamination of signals.
This characterisation is both quantitative (optical turbulence strength) and qualitative (assessing the optical
turbulence statistical model). We present the new opto-mechanical design, with the theoretical capabilities and
limitations to the actual models.
The Durham adaptive Optics Real Time Controller (DARC)1 is a real-time system for astronomical adaptive optics systems originally developed at Durham University and in use for the CANARY instrument. One of its main strengths is to be a generic and high performance real-time controller running on an off-the-shelf Linux computer. We are using DARC for two different implementations: BEAGLE,2 a Multi-Object AO (MOAO) bench system to experiment with novel tomographic reconstructors and LOTUCE2,3 an in-dome turbulence instrument. We present the software architecture for each application, current benchmarks and lessons learned for current and future DARC developers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.