Solid State Physics ,
radiation interaction with matter ,
real-time optical diagnostics ,
Thin film growth ,
group III-nitride compound semiconductors ,
group II-IV-V2 chalcopyrites
This contribution will present the structural and optoelectronic properties of GaN/AlGaN heterostructures
grown by Metal Organic Chemical Vapor Deposition (MOCVD) on GaN/sapphire templates. The target
parameters for the materials heterostructures have been modeled for utilization in Avalanche Photodiode
Detector Structures (APD) operating in the near and deep UV region. Optical modeling has improved
absorption within the heterojunction as well as maximized light trapping within the device. Electronic
modeling has determined the optimal dopant concentrations for maximum impact ionization rate, as well as
tolerance to defects and unintentional doping. This application will require advances in the defect densities,
surface morphology, and interfaces. Surface morphological and structural properties of GaN/AlGaN
heterostructures are analyzed by Atomic Force Microscopy, Raman spectroscopy, and X-ray diffraction. The
optoelectronic properties (phonon structures, free carrier concentrations, and carrier mobility) as well as layer
thickness information, are determined by Fourier Transform Infrared Reflectance spectroscopy. A correlation
of interfacial defects (type and concentration) with microscopic structural properties, surface morphology,
and optoelectronic properties (free carrier concentration and high-frequency dielectric function) is discussed.
KEYWORDS: Indium gallium nitride, Infrared radiation, Near field scanning optical microscopy, Dielectrics, Near field optics, Heterojunctions, Infrared imaging, Spectroscopy, Imaging spectroscopy, Super resolution microscopy
Group III-V semiconductor nanostructures have been at the forefront of numerous
applications in high-power, high frequency optical and optoelectronic devices.
Although, significant progress has been made in fabrication and characterization of
these materials, there are still challenges in the formation of compositional uniform
indium-rich ternary epilayers, embedded in wide bandgap III-N’s. For example,
nanoscale lateral compositional inhomogeneities at the growth surface lead to bulk
phase segregations will reduce the structural quality of the semiconductor
heterostructures both in macro and nanometer scales if not controlled through the
process parameter space at the surface. Studying and understanding the fundamental
physical and structural properties at the nanoscale level and correlating the findings
with processing parameters is essential to mitigate compositional fluctuations in
multinary III-N compounds. In this work we introduce infrared scattering type
scanning near-field microscopy (s-SNOM) for spectroscopic study of nanoscale
optical properties of InGaN epilayers on GaN- or InN templates. S-SNOM possesses
spatial resolution of few nanometers (~15 nm) far below the diffraction limit and
allows spectroscopic imaging of simultaneous chemical and structural information
correlated with morphology. We correlate s-SNOM near-field amplitude and phase
optical contrasts at infrared frequencies to the dielectric constants and growth
parameters of InN/InGaN heterostructures and/or single nanoparticles. We observed
that both the real and imaginary dielectric function values of mono-/bi-layers of
InN/InGaN can be extracted from s-SNOM data. By performing nano-spectroscopy
on lithographically patterned samples, we also show that self-assembled InGaN
nanoparticles have similar dielectric function values as that of thin film InGaN.
This contribution presents results on the structural and optoelectronic properties of InN layers grown on AlN/sapphire
(0001) templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPAMOCVD).
The AlN nucleation layer (NL) was varied to assess the physical properties of the InN layers. For ex-situ
analysis of the deposited structures, Raman spectroscopy, Atomic Force Microscopy (AFM), and Fourier Transform
Infrared (FTIR) reflectance spectroscopy have been utilized. The structural and optoelectronic properties are assessed by
Raman-E2 high FWHM values, surface roughness, free carrier concentrations, mobility of the free carriers, and high
frequency dielectric function. This study focus on optimizing the AlN nucleation layer (e.g. temporal precursor
exposure, nitrogen plasma exposure, plasma power and AlN buffer growth temperature) and its effect on the InN layer
properties.
This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.
Wide band gap dilute magnetic semiconductors have recently been of interest due to theoretical predictions of room
temperature ferromagnetism in these materials. In this work Ga1-xGdxN thin films were grown by Metalorganic
Chemical Vapor Deposition. These films were found to be ferromagnetic at room temperature and electrically
conducting. However, only GaN:Gd layers and devices grown with a TMHD3Gd precursor that contained oxygen
showed strong ferromagnetism, while materials grown with an oxygen-free Cp3Gd precursor did not show ferromagnetic behavior. This experimental observation was consistent with first-principles calculations based on density functional theory calculations that we completed that showed the ferromagnetism was mediated by interstitial oxygen. The results confirmed the first successful realization of Ga1-xGdxN-based spin-polarized LED with 14.6% degree of polarization at 5000 Gauss is obtained.
The influence of structural and optoelectronic properties of InN epilayers on the duration of initial nucleation
has been studied. High pressure chemical vapor deposition (HPCVD) has been utilized to deposit InN epilayers on
GaN/sapphire (0001) templates at a reactor pressure of 15 bar. The initial nucleation period was varied between 10 s and 60 s, leaving all other growth parameters constant. The structural properties of the grown samples have been investigated by X-ray diffraction (XRD) spectroscopy and Raman spectroscopy. The optoelectronic properties were analyzed by Fourier transform infra-red (FTIR) spectroscopy. The layer thickness, free carrier concentration and void fraction were obtained by simulating IR spectra, using multi-layer stack model for epilayers and Lorentz-Drude model for dielectric function. Raman, X-ray diffraction (XRD) and void fraction calculation results suggest that the optimum nucleation time is between 10 - 20 s. However, simulation results revealed that the free carrier concentration of the bulk layer does not show any significant dependency on the duration of initial nucleation.
The dependency of the structural and optoelectronic properties of InN thin films grown by high-pressure chemical
vapor deposition technique on the group V/III molar precursor ratio has been studied. X-ray diffraction, Raman
spectroscopy, and IR reflectance spectroscopy have been utilized to study local- and long-range structural ordering as
well as optoelectronic properties of the InN epilayers grown on crystalline sapphire substrates. The investigated InN
epilayers were grown with group V/III molar precursor ratio varying from 900 to 3600, while all other growth
parameters were kept constant. For a group V/III precursor ratio of 2400, the full width-half maximum of the Raman
E2(high) mode and XRD (0002) Bragg reflex exhibit minimums of 7.53 cm⁻¹ and 210 arcsec, respectively, with
maximized grain size and reduced in-plane strain effect. FTIR data analysis reveals a growth rate of 120 nm/hr, a carrier
mobility of 1020 cm²V⁻¹s⁻¹, and a free carrier concentration of 1.7×1018 cm⁻³ for a V/III ratio of 2400. The Raman
analysis indicate that non-polar E2(high) mode position remains unaffected from a changing V/III ratio; whereas, polar
A1(LO) mode position significantly changes with changing V/III ratio. Optical analysis also suggests that LO-phonon
correlates with free carrier concentration (ne) and TO-phonon correlates with free carrier mobility (μ) in the InN
epilayers.
Results on the achievable growth temperature as a function of the reactor pressure for the growth of InN by high-pressure CVD are presented. As the reactor pressure was increased from 1 bar to 19 bar, the optimal growth temperature raised from 759°C to 876°C, an increase of 6.6 °C/bar. The InN layers were grown in a horizontal flow channel reactor, using a pulsed precursor injection scheme. The structural and optical properties of the epilayers have been investigated by Raman spectroscopy, X-ray diffraction, and IR reflectance spectroscopy.
Capacitance-voltage-frequency measurements on n+-GaN/AlxGa1-xN Heterojunction Interfacial Workfunction
Internal Photoemission (HEIWIP) detectors were used to analyze the effects of Al fraction induced heterojunction
barrier and its effect on the electrical characteristics at the heterointerface. The detector's IR threshold can
be modified by changing the barrier Al concentration. A sample with an Al fraction of 0.1 shows a distinct
capacitance step and capacitance hysteresis, which is attributed to N-vacancies and/or C-donor electron trap
states located just above the Fermi level (200 meV) at the GaN/AlGaN interface, with activation energies of
149±1 and ~189 meV, respectively. A sample with an Al fraction of 0.026 showed negative capacitance and
dispersion, indicating interface electron trap states located below the Fermi level (88 meV), most likely due to
C-donor and/or N-vacancy with activation energies of 125±1 and 140±2 meV, respectively. Additional impurity
related absorption centers were identified in both samples, however these shallow Si-donor sites (~30.9±0.2 meV)
did not affect the capacitance as these states were located in the barrier layer and not in the vicinity of the Fermi
level. The Al fraction in the barrier layer was found to significantly change the positions of the interface trap
states relative to the Fermi level, resulting in the observed capacitance characteristics.
The optical and structural properties of InN layers grown by 'High Pressure Chemical Vapor
Deposition' (HPCVD) using a pulsed precursor approach have been studied. The study focuses on
the effect of ammonia precursor exposure time and magnitude on the InN layer quality. The samples
have been analyzed by X-ray diffraction, Raman scattering, infra red reflectance spectroscopy and
photoluminescence spectroscopy. Raman measurements and X-ray diffraction showed the grown
layers to be single phase InN of high crystalline quality. The E2(high) Raman mode showed
FWHM's as small as 9.2 cm-1. The FWHM's of the InN(0002) X-ray Bragg reflex in the 2Θ-Ω-
scans were around 350 arcsec, with rocking curve values as low as 1152 arcsec Photoluminescence
features have been observed down to 0.7 eV, where the low energy cutoff might be due to the
detector limitation. The analysis of the IR reflectance spectra shows that the free carrier
concentrations are as low as as 3.3•1018 cm-3 for InN layers grown on sapphire substrates.
Detection of both UV and IR radiation is useful for numerous applications such as firefighting and military
sensing. At present, UV and IR dual wavelength band detection requires separate detector elements. Here
results are presented for a GaN/AlGaN single detector element capable of measuring both UV and IR response.
The initial detector used to prove the dualband concept consists of an undoped AlGaN barrier layer between
two highly doped GaN emitter/contact layers. The UV response is due to interband absorption in the AlGaN
barrier region producing electron-hole pairs which are then swept out of the barrier by an applied electric field
and collected at the contacts. The IR response is due to free carrier absorption in the emitters and internal
photoemission over the work function at the emitter barrier interface, followed by collection at the opposite
contact. The UV threshold for the initial detector was 360 nm while the IR response was in the 8-14 micron
range. Optimization of the detector to improve response in both spectral ranges will be discussed. Designs
capable of distinguishing the simultaneously measured UV and IR by using three contacts and separate IR and
UV active regions will be presented. The same approach can be used with other material combinations to cover
additional wavelength ranges, e.g. GaAs/AlGaAs NIR-FIR dual band detectors.
Nonlinear confined (optical and/or electrical) heterostructures based on III-IV-V2 chalcopyrite (CP) thin films and/or embedded CP materials offer unique advantages over group III-V and IV linear structures. These stem from the birefringent nature and the lower crystal symmetry of the CP semiconductors. As an example, this property is responsible three-wave nonlinear parametric processes (a second-order nonlinear effect) and very high values of the second-order hyperpolarizabilities. The recent discovery of room-temperature ferromagnetism in diluted magnetic CP semiconductors adds an additional functionality to this material system that makes possible the construction of novel magneto-optical device structures based on ferromagnetic nanocomposites and confined ferromagnetic heterostructures, which can be embedded in confined birefringent layers. Such structures are the basic elements for advanced "Solid-State Molecular Sensor" (SSMS) device structures. Rugged, miniaturized SSMS structures can be constructed which are based on a unique, optically confined birefringent, group II-IV-V2 CP heterostructure technology. This system identifies target chemicals and biological molecules in real-time under ambient conditions. It can detect and discriminate between numerous and varied molecular species by employing resonant phase- and/or amplitude sensitive detection over a large, tunable spectral range. The SSMS can be made sensitive to a specific group of molecules with appropriate phase matching conditions. Its response is unlike that of a linear waveguide sensor in two primary areas: change of frequency output, and intensity of the output light generated. Both signals are generated in a nonlinear second harmonic generation process sensitive to small changes in the phase matching conditions. Potential applications include compact ultra-sensitive sensors, nonlinear optical modulators, magnetic photonic crystals, magneto-optical switches, detectors, and spin electronic devices.
KEYWORDS: Indium nitride, 3D modeling, Indium, Medium wave, Nitrogen, Adsorption, Chemistry, Chemical reactions, Computer simulations, Temperature metrology
A numerical model was developed to simulate vapor deposition in high-pressure chemical vapor-deposition reactors, under different conditions of pressure, temperature, and flow rates. The model solved for steady-state gas-phase and heterogeneous chemical kinetic equations coupled with fluid dynamic equations within a three-dimensional grid simulating the actual reactor. The study was applied to indium nitride (InN) epitaxial growth. The steady-state model showed that at 1050-1290 K average substrate temperatures and 10 atm of total pressure, atomic indium (In) and monomethylindium [In(CH3)] were the main group III gaseous species, and undissociated ammonia (NH3) and amidogen (NH2) the main group V gaseous species. The results from numerical models with an inlet mixture of 0.73:0.04:0.23 mass fraction ratios for nitrogen gas (N2), NH3 and trimethylindium [In(CH3)3], respectively, and an initial flow rate of 0.17 m s-1, were compared with experimental values. Using a simple four-path surface reaction scheme, the numerical models yielded a growth rate of InN film of 0.027 μm per hour when the average substrate temperature was 1050 K and 0.094 μm per hour when the average substrate temperature was 1290 K. The experimental growth rate under similar flow ratios and reactor pressure, with a reactor temperature between 800 and 1150 K yielded an average growth rate of 0.081 μm per hour, comparing very well with the computed values.
The growth of high-quality InN and indium rich group III-nitride alloys are of crucial importance for the development of high-efficient energy conversion systems, THz emitters and detectors structures, as well as for high-speed linear/nonlinear optoelectronic elements. However, the fabrication of such device structures requires the development of growth systems with overlapping processing windows in order to construct high-quality monolithic integrated device structures. While gallium and aluminum rich group III-nitrides are being successfully grown by organometallic chemical vapor deposition (OMCVD), the growth of indium rich group III-nitrides presents a challenge due to the high volatility of atomic nitrogen compared to indium. In order to suppress the thermal decomposition at optimum processing temperatures, a new, unique high-pressure chemical vapor deposition (HPCVD) system has been developed, allowing the growth of InN at temperatures close to those used for gallium/aluminum-nitride alloys.
The properties of InN layers grown in the laminar flow regime with reactor pressures up to 15 bar, are reported. Real-time optical characterization techniques have been applied to analyze gas phase species and are highly sensitive the InN nucleation and steady state growth, allowing the characterization of surface chemistry at a sub-monolayer level. The ex-situ analysis of the InN layers shows that the absorption edge in the InN shifts below 0.7 eV as the ammonia to TMI precursor flow ratio is lowered below 200. The results indicate that the absorption edge shift in InN is closely related to the In:N stoichiometry.
This work focuses on the development of materials and growth techniques suitable for future spintronic device applications. Metal-organic chemical vapor deposition (MOCVD) was used to grow high-quality epitaxial films of varying thickness and manganese doping levels by introducing bis-cyclopentadienyl as the manganese source. High-resolution X-ray diffraction indicates that no macroscopic second phases are formed during growth, and Mn containing films are similar in crystalline quality to undoped films Atomic force microscopy revealed a 2-dimensional MOCVD step-flow growth pattern in the Mn-incorporated samples. The mean surface roughnesses of optimally grown Ga1-xMnxN films were almost identical to that from the as-grown template layers, with no change in growth mechanism or morphology. Various annealing steps were applied to some of the samples to reduce compensating defects and to
investigate the effects of post processing on the structural, magnetic and opto-electronic properties. SQUID measurements showed an apparent ferromagnetic hysteresis behavior which persisted to room temperature. An optical absorption band around 1.5 eV was observed via transmission studies. This band is assigned to the internal Mn3+ transition between the 5E and the partially filled 5T2 levels of the 5D state. The broadening of the absorption band is
introduced by the high Mn concentration. Recharging of the Mn3+ to Mn2+ was found to effectively suppress these transitions resulting in a reduction of the magnetization. The structural quality, and the presence of Mn2+ ions were
confirmed by EPR spectroscopy, meanwhile no Mn-Mn interactions indicative of clustering were observed. The absence of doping-induced strain in Ga1-xMnxN was observed by Raman spectroscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.