Performance scalability of computing systems built upon chip multiprocessors are becoming increasingly constrained by limitations in power dissipation, chip packaging, and the data throughput achievable by the interconnection networks. In particular, today’s systems based on electronic interconnects suffer from a growing memory access bottleneck as the speed at which processor-memory data can be communicated out of the chip package is severely bounded. Silicon photonics provide a CMOS-compatible solution for integrating high bandwidth-density off-chip optical I/O which can overcome some of these packaging limitations while adhering to pJ/bit-scale power efficiency requirements. Microrings in particular pose an attractive option for realizing optical communication functionalities due to their low footprint, low power dissipation, and inherent WDM-suitability due to their wavelength-localized operation. We analyze a terabit-per-second scale microring-based optical WDM link composed of current best-of-class devices. Our analysis provides quantitative measures for the maximal achievable bandwidth per link that could be reasonably realized within several years. We account for the full optical power budget to determine the achievable bandwidth as well as to enable a power consumption analysis including transmit and receive circuitry, photonic-device power dissipation, and laser power. The results highlight key device attributes that require significant advancement and point out the need for improvements in laser wall-plug efficiencies to provide sub-pJ/bit scale optical links.
We show wavelength conversion and wavelength multicasting using four-wave mixing in silicon waveguides, achieving
record performance in both bandwidth and bit rates in this CMOS-compatible platform. Non-return-to-zero data at 10-
and 40-Gb/s bit rates is wavelength converted across nearly 50 nm, with error-free transmission. Bit-rate transparency of
the all-optical process is demonstrated by converting up to 160-Gb/s return-to-zero data. In addition, an eight-way
wavelength multicast of 40-Gb/s data is shown using the same silicon waveguide platform, with error-free transmission.
The communication performance is evaluated using measured eye diagrams, bit-error rates, and power penalty
performance metrics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.