The development of high pulse energy and high repetition rate lasers based on Yb:YAG ceramics is expected to achieve high average power in areas not previously achieved by high energy diode pumped solid state lasers (DPSSL). Such lasers are of interest for advanced materials processing, surface treatments such as laser peening, and pumping ultra-intense lasers for compact radiation and particle sources. The choices of gain media, amplifier geometry, thermal management, and extraction architecture are important aspects for development of a scalable high repetition rate and high energy laser system. We are aiming to develop a pulse energy of 100 J, repetition rate of 100 Hz using conductive-cooled Yb:YAG active-mirror amplifier with a liquid-nitrogen cooling. We report on the status of the development our laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.