The fluctuation–magnification effect on the peak intensity of a laser pulse caused by the nonlinear Kerr effect in the chirped volume Bragg grating (CVBG) compressor is investigated experimentally for a high-energy, thin-disk, chirped pulse amplification system. The nonlinear Kerr effect occurs at the blue end, and the accumulated nonlinear phase shift (B-integral) in the CVBG rises with the increase of laser pulse energy. Experiments show that small fluctuations in peak power of uncompressed pulses cause increasing of the temporal fluctuation and spatial fluctuation due to high Kerr-nonlinearity in the CVBG when B-integral is larger than π. Thus the initial fluctuation would be magnified by the CVBG compressor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.