Optical fibre scintillation detectors have proven to be a viable alternative in clinical radiation dosimetry. By obtaining active readouts, scintillators can be used to give real time measurements for various clinical and pre-clinical applications from radiology to radiation therapy. Gd2O2S:Pr is of interest as a scintillator due to it offering a much higher light output than other scintillators, organic scintillators in particular. Temperature dependence is exhibited by a number of organic scintillators, such as BCF-60; this however needs to be established for the inorganic scintillator Gd2O2S:Pr. This study therefore aims to characterize the temperature dependence of Gd2O2S:Pr, using the HYPERSCINT Research Platform 200. The detector was immersed in water and the temperature varied from 22.7°C to 49.0°C using a hotplate and temperature controller. Five spectra were recorded and averaged at each of the seven temperatures, in approximately 5°C increments. A decrease in total photon count with temperature was observed of 0.22%/°C between 346 and 631 nm with a decrease of 0.38 in the full width at half maximum at the photopeak of 513 nm. A method of correcting for temperature is necessary in the use of Gd2O2S:Pr as a detection material in environments where the temperature differs significantly from the calibration temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.