Protecting fine details and edges while denoising digital images is a challenging area of research due to changing characteristics of both, noise and signal. Denoising is used to remove noise from corrupted images but in the process fine details like weak edges and textures are hampered. In this paper we propose an algorithm based on Ridgelet transform to denoise images and protect fine details. Here we use cycle spinning on Ridgelet coefficients with soft thresholding and name the algorithm as Ridgelet Shrinkage in order to suppress noise and preserve details. The projections in Ridgelets filter out the noise while protecting the details while the ridgelet shrinkage further suppress noise. The proposed algorithm out performs the Wavelet Shrinkage and Non-local (NL) means denoising algorithms on the basis of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) numerically and visually both.
KEYWORDS: Image segmentation, Genetic algorithms, Image processing algorithms and systems, Color image processing, RGB color model, Visualization, Image processing, Color image segmentation, Genetics, Human vision and color perception
This paper proposes a family of color image segmentation algorithms using genetic approach and color similarity threshold in terns of Just noticeable difference. Instead of segmenting and then optimizing, the proposed technique directly uses GA for optimized segmentation of color images. Application of GA on larger size color images is computationally heavy so they are applied on 4D-color image histogram table. The performance of the proposed algorithms is benchmarked on BSD dataset with color histogram based segmentation and Fuzzy C-means Algorithm using Probabilistic Rand Index (PRI). The proposed algorithms yield better analytical and visual results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.