MOSAIC is a mixed-mode multiple object spectrograph planned for the ELT that uses a tiled focal plane to support a variety of observing modes. The MOSAIC AO system uses 4 LGS WFS and up to 4 NGS WFS positioned anywhere within the full 10 arcminute ELT field of view to control either the ELT M4/5 alone for GLAO operation feeding up to 200 targets in the focal plane, or M4/5 in conjunction with 10 open-loop DMs for MOAO correction. In this paper we present the overall design and performance of the MOSAIC GLAO and MOAO systems.
Assembly, Integration, Test and Validation (AIT/V) phases for AO instruments, in laboratory as in the telescope, represent numerous technical challenges. The Laboratoire d’Astrophysique de Marseille (LAM) is in charge of the AIT/V preparation and planning for the MOSAIC (ELT-MOS) instrument, from identification of needs, challenges, risks, to defining the optimal AIT strategy for this highly modular and serialized instrument. In this paper, we present the status of this study and describe several AIT/V scenarios as well as a planning for AIT phases in Europe and in Chile. We also show our capabilities, experience and expertise to lead the instrument MOSAIC AIT/V activities.
Following a successful Phase A study, we introduce the delivered conceptual design of the MOSAIC1 multi-object spectrograph for the ESO Extremely Large Telescope (ELT). MOSAIC will provide R~5000 spectroscopy over the full 460-1800 nm range, with three additional high-resolution bands (R~15000) targeting features of particular interest. MOSAIC will combine three operational modes, enabling integrated-light observations of up to 200 sources on the sky (high-multiplex mode) or spectroscopy of 10 spatially-extended fields via deployable integral-field units: MOAO6 assisted high-definition (HDM) and Visible IFUs (VIFU). We will summarise key features of the sub-systems of the design, e.g. the smart tiled focal-plane for target selection and the multi-object adaptive optics used to correct for atmospheric turbulence, and present the next steps toward the construction phase.
We present the consolidated scientific case for multi-object spectroscopy with the MOSAIC concept on the European ELT. The cases span the full range of ELT science and require either ‘high multiplex’ or ‘high definition’ observations to best exploit the excellent sensitivity and wide field-of-view of the telescope. Following scientific prioritisation by the Science Team during the recent Phase A study of the MOSAIC concept, we highlight four key surveys designed for the instrument using detailed simulations of its scientific performance. We discuss future ways to optimise the conceptual design of MOSAIC in Phase B, and illustrate its competitiveness and unique capabilities by comparison with other facilities that will be available in the 2020s.
MOSAIC is a concept for a multi-object spectrograph for the Extremely Large Telescope (ELT). It is planned to cover the wavelength range from 460 nm to 1800 nm with 5 visible spectrographs and 5 near-infrared spectrographs. The ELT is far from diffraction limited in the visible wavelength range. Rather than developing a large and complex AO system, it was decided that the instrument will be seeing limited in the visible. Spot sizes are therefore about 2.8 mm in diameter in the ELT focal plane, and need to be sampled by multiple fibers with large core diameter. As a result, large optics is required to achieve the science requirements on spectral resolution, bandwidth and multiplex. We work in close collaboration with manufacturers to design an instrument that is feasible and meets the scientific requirements.
Product Assurance is an essential activity to support the design and construction of complex instruments developed for major scientific programs. The international size of current consortia in astrophysics, the ambitious and challenging developments, make the product assurance issues very important. The objective of this paper is to focus in particular on the application of Product Assurance Activities to a project such as MOSAIC, within an international consortium. The paper will also give a general overview on main product assurance tasks to be implemented during the development from the design study to the validation of the manufacturing, assembly, integration and test (MAIT) process and the delivery of the instrument.
When combined with the huge collecting area of the ELT, MOSAIC will be the most effective and flexible Multi-Object Spectrograph (MOS) facility in the world, having both a high multiplex and a multi-Integral Field Unit (Multi-IFU) capability. It will be the fastest way to spectroscopically follow-up the faintest sources, probing the reionisation epoch, as well as evaluating the evolution of the dwarf mass function over most of the age of the Universe. MOSAIC will be world-leading in generating an inventory of both the dark matter (from realistic rotation curves with MOAO fed NIR IFUs) and the cool to warm-hot gas phases in z=3.5 galactic haloes (with visible wavelenth IFUs). Galactic archaeology and the first massive black holes are additional targets for which MOSAIC will also be revolutionary. MOAO and accurate sky subtraction with fibres have now been demonstrated on sky, removing all low Technical Readiness Level (TRL) items from the instrument. A prompt implementation of MOSAIC is feasible, and indeed could increase the robustness and reduce risk on the ELT, since it does not require diffraction limited adaptive optics performance. Science programmes and survey strategies are currently being investigated by the Consortium, which is also hoping to welcome a few new partners in the next two years.
KEYWORDS: Adaptive optics, Spectrographs, Telescopes, James Webb Space Telescope, Adaptive optics, Galactic astronomy, Molybdenum, K band, Space telescopes, Near infrared, Spectral resolution
There are 8000 galaxies, including 1600 at z ≥ 1.6, which could be simultaneously observed in an E-ELT field of view of 40 arcmin2. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be obtained with multi-object spectrographs (MOS). MOSAIC will provide a vast discovery space, enabled by a multiplex of 200 and spectral resolving powers of R=5000 and 20000. MOSAIC will also offer the unique capability of more than 10 `high-definition' (multi-object adaptive optics, MOAO) integral-field units, optimised to investigate the physics of the sources of reionization. The combination of these modes will make MOSAIC the world-leading MOS facility, contributing to all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest ‘first-light’ structures in the Universe. It will also study the distribution of the dark and ordinary matter at all scales and epochs of the Universe. Recent studies of critical technical issues such as sky-background subtraction and MOAO have demonstrated that such a MOS is feasible with state-of-the-art technology and techniques. Current studies of the MOSAIC team include further trade-offs on the wavelength coverage, a solution for compensating for the non-telecentric new design of the telescope, and tests of the saturation of skylines especially in the near-IR bands. In the 2020s the E-ELT will become the world's largest optical/IR telescope, and we argue that it has to be equipped as soon as possible with a MOS to provide the most efficient, and likely the best way to follow-up on James Webb Space Telescope (JWST) observations.
We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC,1, 2 the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that arose from the earlier studies of the multi-object and multi-adaptive optics instruments (see MOSAIC science requirements in [3]). MOSAIC combines the advantages of a highly-multiplexed instrument targeting single-point objects with one which has a more modest multiplex but can spatially resolve a source with high resolution (IFU). These will span across two wavebands: visible and near-infrared.
KEYWORDS: Space telescopes, Spectrographs, Spectroscopes, Telescopes, Galactic astronomy, K band, Spectral resolution, James Webb Space Telescope, Visible radiation, Sensors
Building on the comprehensive White Paper on the scientific case for multi-object spectroscopy on the European ELT, we present the top-level instrument requirements that are being used in the Phase A design study of the MOSAIC concept. The assembled cases span the full range of E-ELT science and generally require either ‘high multiplex' or 'high definition' observations to best exploit the excellent sensitivity and spatial performance of the telescope. We highlight some of the science studies that are now being used in trade-off studies to inform the capabilities of MOSAIC and its technical design.
MOSAIC is the proposed multiple-object spectrograph for the E-ELT that will utilise the widest possible field of view provided by the telescope. In terms of adaptive optics, there are two distinct operating modes required to meet the top-level science requirements. The MOSAIC High Multiplex Mode (HMM) requires either seeing-limited or GLAO correction within a 0.6 (NIR) and 0.9 (VIS) arcsecond sub-fields over the widest possible field for a few hundred objects. To achieve seeing limited operation whilst maintaining the maximum unvignetted field of view for scientific observation will require recreating some of the functionality present in the Pre-Focal Station relating to control of the E-ELT active optics. MOSAIC High Definition Mode Control (HDM) requires a 25% Ensquared Energy (EE) within 150mas in the H-band element for approximately 10 targets distributed across the full E-ELT field, implying the use of Multiple Object AO (MOAO). Initial studies have shown that to meet the EE requirements whilst maintaining high-sky coverage will require the combination of wavefront signals from both high-order NGS and LGS to provide a tomographic estimate for the correction to be applied to the open-loop MOAO DMs. In this paper we present the current MOSAIC AO design and provide the first performance estimates for the baseline instrument design. We then report on the various trade-offs that will be investigated throughout the course of the Phase A study, such as the requirement to mix NGS and LGS signals tomographically. Finally, we discuss how these will impact the AO architecture, the MOSAIC design and ultimately the scientific performance of this wide-field workhorse instrument at the E-ELT.
C. Evans, M. Puech, B. Barbuy, P. Bonifacio, J.-G. Cuby, E. Guenther, F. Hammer, P. Jagourel, L. Kaper, S. Morris, J. Afonso, P. Amram, H. Aussel, A. Basden, N. Bastian, G. Battaglia, B. Biller, N. Bouché, E. Caffau, S. Charlot, Y. Clénet, F. Combes, C. Conselice, T. Contini, G. Dalton, B. Davies, K. Disseau, J. Dunlop, F. Fiore, H. Flores, T. Fusco, D. Gadotti, A. Gallazzi, E. Giallongo, T. Gonçalves, D. Gratadour, V. Hill, M. Huertas-Company, R. Ibata, S. Larsen, O. Le Fèvre, B. Lemasle, C. Maraston, S. Mei, Y. Mellier, G. Östlin, T. Paumard, R. Pello, L. Pentericci, P. Petitjean, M. Roth, D. Rouan, D. Schaerer, E. Telles, S. Trager, N. Welikala, S. Zibetti, B. Ziegler
Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the
European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input
from a broad cross-section of astronomers across the ESO partner countries. In this contribution we summarise the key
cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive
presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for
two observational modes to best exploit the large (≥40 arcmin2) patrol field of the E-ELT. The first mode (‘high
multiplex’) requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of >100 objects simultaneously.
The second (‘high definition’), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of >10
objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the toplevel
requirements from each case and introduce the next steps in the design process.
The Universe is comprised of hundreds of billions of galaxies, each populated by hundreds of billions of stars. Astrophysics aims to understand the complexity of this almost incommensurable number of stars, stellar clusters and galaxies, including their spatial distribution, formation, and current interactions with the interstellar and intergalactic media. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be addressed with multi-object spectrographs (MOS). Here we introduce the MOSAIC study of an optical/near-infrared MOS for the European Extremely Large Telescope (E-ELT), which has capabilities specified by science cases ranging from stellar physics and exoplanet studies to galaxy evolution and cosmology. Recent studies of critical technical issues such as sky-background subtraction and multi-object adaptive optics (MOAO) have demonstrated that such a MOS is feasible with current technology and techniques. In the 2020s the E-ELT will become the world’s largest optical/IR telescope, and we argue that it has to be equipped as soon as possible with a MOS. MOSAIC will provide a vast discovery space, enabled by a multiplex of ∼ 200 and spectral resolving powers of R = 5 000 and 20 000. MOSAIC will also offer the unique capability of 10-to-20 ‘high-definition’ (MOAO) integral-field units, optimised to investigate the physics of the sources of reionisation, providing the most efficient follow-up of observations with the James Webb Space Telescope (JWST). The combination of these modes will enable the study of the mass-assembly history of galaxies over cosmic time, including high-redshift dwarf galaxies and studies of the distribution of the intergalactic medium. It will also provide spectroscopy of resolved stars in external galaxies at unprecedented distances, from the outskirts of the Local Group for main-sequence stars, to a significant volume of the local Universe, including nearby galaxy clusters, for luminous red supergiants.
4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large
area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with ~2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; ~1600 fibres go to two spectrographs with resolution R<5000 (λ~390-930 nm) and
~800 fibres to a spectrograph with R>18,000 (λ~392-437 nm and 515-572 nm and 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the
southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing
concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020.
This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more
detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
The 4MOST[1] instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the
ESO VISTA telescope designed to perform a massive (initially >25x106 spectra in 5 years) combined all-sky public
survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial
velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of
galaxies, X-ray AGN/galaxy evolution to z~5, Galactic X-ray sources and resolving the Galactic edge;
Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be
undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data
reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of
~1600 targets at R~5,000 from 390-900nm and ~800 targets at R<18,000 in three channels between ~395-675nm
(channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of ~ 4.1 degrees. The initial
5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: optomechanical,
control, data management and operations concepts; and initial performance estimates.
MOONS is a new Multi-Object Optical and Near-infrared Spectrograph selected by ESO as a third generation
instrument for the Very Large Telescope (VLT). The grasp of the large collecting area offered by the VLT (8.2m
diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8μm - 1.8μm) of MOONS
will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of
Galactic, Extragalactic and Cosmological studies and provide crucial follow-up for major facilities such as Gaia,
VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over
the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very
first galaxies and re-ionization of the Universe at redshift z>8-9, just few million years after the Big Bang. On a
timescale of 5 years of observations, MOONS will provide high quality spectra for >3M stars in our Galaxy and the
local group, and for 1-2M galaxies at z>1 (SDSS-like survey), promising to revolutionise our understanding of the
Universe.
The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol
field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8μm-1.8μm and two resolution
modes: medium resolution and high resolution. In the medium resolution mode (R~4,000-6,000) the entire wavelength
range 0.8μm-1.8μm is observed simultaneously, while the high resolution mode covers simultaneously three selected
spectral regions: one around the CaII triplet (at R~8,000) to measure radial velocities, and two regions at R~20,000 one
in the J-band and one in the H-band, for detailed measurements of chemical abundances.
The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field ( < 3 square degree, goal < 5 square degree), high-multiplex ( < 1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390–1000 nm) and more than 2 million spectra at R~20,000 (395–456.5 nm and 587–673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments.
The EAGLE and EVE Phase A studies for instruments for the European Extremely Large Telescope (E-ELT) originated
from related top-level scientific questions, but employed different (yet complementary) methods to deliver the required
observations. We re-examine the motivations for a multi-object spectrograph (MOS) on the E-ELT and present a unified
set of requirements for a versatile instrument. Such a MOS would exploit the excellent spatial resolution in the near-infrared envisaged for EAGLE, combined with aspects of the spectral coverage and large multiplex of EVE. We briefly
discuss the top-level systems which could satisfy these requirements in a single instrument at one of the Nasmyth foci of
the E-ELT.
The EAGLE instrument is a Multi-Object Adaptive Optics (MOAO) fed, multiple Integral Field Spectrograph (IFS),
working in the Near Infra-Red (NIR), on the European Extremely Large Telescope (E-ELT). A Phase A design study
was delivered to the European Southern Observatory (ESO) leading to a successful review in October 2009. Since that
time there have been a number of developments, which we summarize here. Some of these developments are also
described in more detail in other submissions at this meeting.
The science case for the instrument, while broad, highlighted in particular: understanding the stellar populations of
galaxies in the nearby universe, the observation of the evolution of galaxies during the period of rapid stellar build-up
between redshifts of 2-5, and the search for 'first light' in the universe at redshifts beyond 7. In the last 2 years substantial
progress has been made in these areas, and we have updated our science case to show that EAGLE is still an essential
facility for the E-ELT. This in turn allowed us to revisit the science requirements for the instrument, confirming most of
the original decisions, but with one modification.
The original location considered for the instrument (a gravity invariant focal station) is no longer in the E-ELT
Construction Proposal, and so we have performed some preliminary analyses to show that the instrument can be simply
adapted to work at the E-ELT Nasmyth platform.
Since the delivery of the Phase A documentation, MOAO has been demonstrated on-sky by the CANARY experiment at
the William Herschel Telescope.
4MOST (4-metre Multi-Object Spectrograph Telescope) is a wide field and high multiplex fibre-fed spectroscopic
facility continuously running a public survey on one of ESO's 4-metre telescopes (NTT or VISTA). It is currently
undergoing a concept study and comprises a multi-object (300) high resolution (20 000) spectrograph whose purpose is
to provide detailed chemical information in two wavelength ranges (395-456.5 nm and 587-673 nm). It will complement
the data produced by ESA's space mission Gaia to form an unprecedented galactic-archaeology picture of the Milky Way
as the result of the public survey. Building on the developments carried out for the GYES1 instrument on the Canada-
France-Hawaii Telescope in 2010, the spectrograph is intended as being athermal and not featuring any motorised parts
for high reliability and minimum maintenance, thereby allowing it to operate every night for five years. In addition to the
fixed configuration which allows fine-tuning the spectrograph to a precise need, it features a dual-arm architecture with
volume-phase holographic gratings to achieve the required dispersion at a maximum efficiency in each channel. By
combining high yield time-wise and photon-wise, the spectrograph is expected to deliver more than a million spectra and
make the most out of the selected 4-metre telescope.
MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large
Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a
field of view of ~500 square arcmin, the largest patrol field offered by the Nasmyth focus at the VLT. The total
wavelength coverage is 0.8μm-1.8μm and two resolution modes: medium resolution and high resolution. In the medium
resolution mode (R~4,000-6,000) the entire wavelength range 0.8μm-1.8μm is observed simultaneously, while the high
resolution mode covers simultaneously three selected spectral regions: one around the CaII triplet (at R~8,000) to
measure radial velocities, and two regions at R~20,000 one in the J-band and one in the H-band, for detailed
measurements of chemical abundances.
The grasp of the 8.2m Very Large Telescope (VLT) combined with the large multiplex and wavelength coverage of
MOONS – extending into the near-IR – will provide the observational power necessary to study galaxy formation and
evolution over the entire history of the Universe, from our Milky Way, through the redshift desert and up to the epoch
of re-ionization at z<8-9. At the same time, the high spectral resolution mode will allow astronomers to study chemical
abundances of stars in our Galaxy, in particular in the highly obscured regions of the Bulge, and provide the necessary
follow-up of the Gaia mission. Such characteristics and versatility make MOONS the long-awaited workhorse near-IR
MOS for the VLT, which will perfectly complement optical spectroscopy performed by FLAMES and VIMOS.
We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel
Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased
(Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2 degree prime focus field of view
at the WHT, with a buffered pick and place positioner system hosting 1000 multi-object (MOS) fibres or up to 30
integral field units for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k
(spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting
observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with
limited coverage in each arm at R~20000.
In order to mitigate the risks of development of the M4 adaptive mirror for the E-ELT, CILAS has proposed to build a
demonstration prototype and breadboards dedicated to this project. The objectives of the demonstration prototype
concern the manufacturing issues such as mass assembly, integration, control and polishing but also the check the global
dynamical and thermal behaviour of the mirror. The local behaviour of the mirror (polishing quality, influence function,
print through...) is studied through a breadboard that can be considered as a piece of the final mirror. We propose in this
paper to present our breadboard strategy, to define and present our mock-up and to comment the main results and lessons
learned.
Increasing dimensions of ground based telescopes and adaptive optics needs for these instruments require wide
deformable mirrors with a high number of actuators to compensate the effects of the atmospheric turbulence on the wave
fronts. The new dimensions and characteristics of these deformable mirrors lead to the apparition of structural vibrations,
which may reduce the rejection band width of the adaptive optics control loop.
The aim of this paper is the study of the dynamic behavior of a
1-meter prototype of E-ELT's deformable mirror in order
to identify its eigenmodes and to propose some ways to control its vibrations. We first present the first eigenmodes of the
structure determined by both finite element analysis and experimental modal analysis. Then we present the frequency
response of the prototype to a tilt excitation to estimate the effects of its vibrations on the adaptive optics loop. Finally
we suggest a method to control the dynamics of the deformable mirror.
EAGLE is the multi-object spatially-resolved near-IR spectrograph instrument concept for the E-ELT, relying
on a distributed Adaptive Optics, so-called Multi Object Adaptive Optics. This paper presents the results of
a phase A study. Using 84×84 actuator deformable mirrors, the performed analysis demonstrates that 6 laser
guide stars (on an outer ring of 7.2' diameter) and up to 5 natural guide stars of magnitude R < 17, picked-up in
a 7.3' diameter patrol field of view, allow us to obtain an overall performance in terms of Ensquared Energy of
35% in a 75×75mas2 resolution element at H band whatever the target direction in the centred 5' science field
for median seeing conditions. In terms of sky coverage, the probability to find the 5 natural guide stars is close
to 90% at galactic latitudes |b| ~ 60 deg. Several MOAO demonstration activities are also on-going.
CILAS proposes a M4 adaptive mirror (M4AM) that corrects the atmospheric turbulence at high frequencies and residual
tip-tilt and defocus due to telescope vibrations by using piezostack actuators. The design presents a matrix of 7217
actuators (triangular geometry, spacing equal to 29 mm) leading to a fitting error reaching the goal. The mirror is held by
a positioning system which ensures all movements of the mirror at low frequency and selects the focus (Nasmyth A or B)
using a hexapod concept. This subsystem is fixed rigidly to the mounting system and permits mirror displacements. The
M4 control system (M4CS) ensures the connection between the telescope control/monitoring system and the M4 unit - positioning system (M4PS) and piezostack actuators of the M4AM in particular. This subsystem is composed of
electronic boards, mechanical support fixed to the mounting structure and the thermal hardware. With piezostack
actuators, most of the thermal load is minimized and dissipated in the electronic boards and not in the adaptive mirror.
The mounting structure (M4MS) is the mechanical interface with the telescope (and the ARU in particular) and ensures
the integrity and stability of M4 unit subsystems. M4 positioning system and mounting structure are subcontracted to
AMOS company.
ATLAS is a generic Laser Tomographic AO (LTAO) system for the E-ELT. Based on modular, relatively simple, and
yet innovative concepts, it aims at providing diffraction limited images in the near infra-red for a close to 100 percent
sky coverage.
EAGLE is an instrument under consideration for the European Extremely Large Telescope (E-ELT). EAGLE will be
installed at the Gravity Invariant Focal Station of the E-ELT. The baseline design consists of 20 IFUs deployable over a
patrol field of ~40 arcmin2. Each IFU has an individual field of view of ~ 1.65" x 1.65". While EAGLE can operate with
the Adaptive Optics correction delivered by the telescope, its full and unrivaled scientific power will be reached with the
added value of its embedded Multi-Object Adaptive Optics System (MOAO). EAGLE will be a unique and efficient
facility for spatially-resolved, spectroscopic surveys of high-redshift galaxies and resolved stellar populations. We detail
the three main science drivers that have been used to specify the top level science requirements. We then present the
baseline design of the instrument at the end of Phase A, and in particular its Adaptive Optics System. We show that the
instrument has a readiness level that allows us to proceed directly into phase B, and we indicate how the instrument
development is planned.
EAGLE is an instrument for the European Extremely Large Telescope (E-ELT). EAGLE will be installed at the Gravity
Invariant Focal Station of the E-ELT, covering a field of view of 50 square arcminutes. Its main scientific drivers are the
physics and evolution of high-redshift galaxies, the detection and characterization of first-light objects and the physics of
galaxy evolution from stellar archaeology. These key science programs, generic to all ELT projects and highly
complementary to JWST, require 3D spectroscopy on a limited (~20) number of targets, full near IR coverage up to 2.4
micron and an image quality significantly sharper than the atmospheric seeing. The EAGLE design achieves these
requirements with innovative, yet simple, solutions and technologies already available or under the final stages of
development. EAGLE relies on Multi-Object Adaptive Optics (MOAO) which is being demonstrated in the laboratory
and on sky. This paper provides a summary of the phase A study instrument design.
EAGLE is an instrument under conceptual study for the European Extremely Large Telescope (E-ELT). EAGLE will be
installed at the Gravity Invariant Focal Station of the E-ELT, covering a field of view between 5 and 10 arcminutes. Its
main scientific drivers are the physics and evolution of high-redshift galaxies, the detection and characterization of first-light
objects and the physics of galaxy evolution from stellar archaeology. The top level requirements of the instrument
call for 20 spectroscopic channels in the near infrared, assisted by Adaptive Optics. Several concepts of the Target
Acquisition sub-system have been studied and are briefly presented. Multi-Conjugate Adaptive Optics (MCAO) over a
segmented 5' field has been evaluated and compared to Multi-Object Adaptive Optics (MOAO). The latter has higher
performance and is easier to implement, and is therefore chosen as the baseline for EAGLE. The paper provides a status
report of the conceptual study, and indicates how the future steps will address the instrument development plan due to be
completed within a year.
Increasing dimensions of ground based telescopes while implementing Adaptive Optics systems to cancel both structural
deformations and atmospheric effects require very large diameters deformable mirrors (DM) and a high number of
actuators with large strokes. This has led for the future E-ELT to a 2.5 m diameter DM getting about 8000 actuators.
This paper presents a local and a global model of the DM in order to both study its influence function and its dynamical
behavior. In the first part, influence function of the mirror is calculated. Results obtained by an analytical way are
compared to those obtained numerically. In the second part, modal analysis of the mirror is presented. Results are limited
to the first modes. Modal analysis is also only made for the base plate to derive the specific influence of DM's
components on the global dynamic behavior. In the last part, optimization methods are used to help designing a 1 m
prototype of the DM.
We report on the science case high level specifications for a wide field spectrograph instrument for an Extremely Large
Telescope (ELT) and present possible concepts. Preliminary designs are presented which resort to different instrument
concepts: monolithic integral field (IFU), multi-IFU, and a smart tunable filter. This work is part of the activities performed
in the work package 'Instrumentation' of the 'ELT Design Study', a programme supported by the European Community,
Framework Programme 6.
We report on the development of instrument concepts for a European ELT, expanding on studies carried out as part of the ESO OWL concept. A range of instruments were chosen to demonstrate how an ELT could meet or approach the goals generated by the OPTICON science team, and used to push the specifications and requirements of telescope and adaptive optics systems. Preliminary conclusions are presented, along with a plan for further more detailed instrument design and technology developments. This activity is supported by the European Community (Framework Programme 6, ELT Design Study, contract number 011863).
FALCON is an original concept for next generation instrumentation at ESO VLT or at future ELTs. It is a multi-objects integral field spectrograph with multiple integral field units (IFU) performing adaptive optics correction in order to reach spatial and spectral resolution ideally suited for distant galaxy studies. The resolutions required for the VLT are typically 0.15 - 0.25 arcsec and R>=5000 in the 0.8-1.8 μm wavelength range. The studied galaxies are very faint objects that cannot be directly used to perform wavefront sensing. Thus, we use at least three Wave-Front Sensors (WFS) per IFU to sense the wavefront of stars located around the galaxy, and the on-axis wavefront from the galaxy will be deduced from the off-axis measurements by atmospheric tomography, and then corrected thanks to an adaptive optics (AO) system within each IFU. Since the WFS is ideally located directly in the focal plane of the telescope, this implies to develop miniaturized devices for the wavefront sensing. Our approach is based on a Shack Hartmann principle and - instead of using a bulky detector behind - we plan to use a miniaturized system including fibers able to transport the light from the focal plane of the microlens array towards a place where the bulk issue is less critical. We draw up the main specifications of this miniaturized system and we present the characteristics of elements manufactured by using new microlithography techniques.
FALCON is an original concept for a next generation instrument which could be used on the ESO Very Large Telescope (VLT) and on the future Extremely Large Telescopes (ELT). It is a multi-objects integral field spectrograph with multiple small integral field units (IFUs). Each of them integrates a tiny adaptive optics system coupled with atmospheric tomography to solve the sky coverage problem. This therefore allows to reach spatial (0.15 - 0.25 arcsec) and spectral (R>=5000) resolutions suitable for distant galaxy studies in the 0.8-1.8 μm wavelength range. In the FALCON concept, the adaptive optics correction is only applied on small and discrete areas selected within a large field. This approach implies to develop miniaturized devices for wavefront correction such as deformable mirrors (DM) and wavefront sensors (WFS). We draw up here the main high level specifications for this instrument, that we derive in a first set of opto-mechanical DM requirements including the state of the art of DM technologies.
Wavefront control is a key issue for developing different systems including: lasers (for various applications: isotopic separation, femto second solid state lasers, micro lithography...), imaging through turbulent media, ophthalmology... For these purposes, we have developed an adaptive optics system that can achieve wavefront very high precision correction. Subsystems will be described including the Wavefront Sensor (Shack-Hartman type), the Deformable Mirror (Bimorph type) and the Real Time Computer (PC type). Emphasis will be made on results that can be obtained using such a system: ultimate quality of the corrected wavefront, measurement range (important during capture phases).
The adaptive optics instrument adaptor for the 3.6 m Canada- France-Hawaii telescope (CFHT) is currently in the commissioning phase. The heart of the system is a 19 electrode bimorph mirror (1:6:12), used with a 19 sub-aperture, curvature wave-front sensor and a separate tip-tilt re-imaging mirror. The performance evaluated in the laboratory and on the sky are presented: the adaptive optics control system provides a 100 Hz servo bandwidth with modal control capabilities. We report astronomical images with median Strehl ratio of 20 (at 1.25 micrometer) to 60% (at 2.2 micrometer), with a FWHM of 0.1 arcsec and a sensitivity allowing image quality improvement with guide stars as faint as mR equals 17.
Since many years CILAS developed active mirrors for synchrotron radiation beamlines. The paper presents the recent developments of bimorph structures usable for x ray mirrors, monochromator crystals, and gratings. The adaptation of the structure to the 3 applications above mentioned is done by choosing the upperplate material and surface coating. The bimorph structure is designed to produce a simple spherical bending of the active plate, or more sophisticated shapes as ellipsoids or parabola. The bimorph structure can be delivered in a mechanical housing able to properly support it. High voltage amplifiers with digital input fitted to control the shape as well as a curvature measurements system may be delivered providing the possibility of closed loop operation. Standard versions of bimorph mirrors and gratings are available. Most of the development works was done under ESRF support.
LASERDOT has acquired a wide experience in Adaptive Optics Systems: components and hardware manufacturing, dedicated software, system integration and maintenance. Associated with several research organizations, it has taken advantage of having installed the first AO systems routinely used by astronomers. This paper presents deformable mirrors as well as tip- tilt mirror designed and achieved at Laserdot jointly with Observatoire de Paris-Meudon. Some comparisons between the different types of deformable mirrors are done.
Since approximately 5 years, several experimental Adaptive Optics Systems have been tested on different astronomical sites. This paper describes a general purpose AOS designed for new or existing telescopes for diameters ranging from 2 to 4 meters. Investigations on actually available Adaptive Mirrors and Wavefront sensors are made. The use of a bimorph mirror and simplified Shack Hartmann is proposed. Results of simulation to evaluate the Strehl ratios for different wavelengths are given versus seeing conditions and star magnitudes. This leads to the conclusion that low cost, turn key AOS are a new attractive possibility for Astronomy.
Laserdot is a company which manufactures both Stacked Array Mirrors (SAM) and Bimorph mirrors (BIM) types. The first type is well known as the COME-ON plus type, working on European Southern Observatory (ESO) telescope, and the second one is working successfully on University of Hawaii bench, lead by Francois Roddier. As it does not yet exist exhaustive comparison between both mirrors LASERDOT finds interesting to compare them in full objectivity to know which kind of mirror is better dedicated to one or to the other application. Based on our recent works, the two components are compared and we give a few criterions which, depending on the application field and goals, make easier the choice between both technologies.
Laserdot has at first been involved in the adaptive optics field under French government military programs. It has allowed the achievement of very high-performance systems. Impressive results have been obtained in this specific field. In this paper we first remind the reader how an adaptive optics system runs and we review the main components used in such a system. Second, we briefly describe the Come-On-Plus experiment and relative components. As a description of the different strategies that can be explored for astronomical applications, we also present the Adaptive Optics Bonnette of the CFHT 3.6 m telescope. At last, we describe the peculiar adaptive mirror that has been achieved for the ESRF x-ray beam line as well as the sensor which is being used in this experiment. It shows that it is possible to extend the concept of adaptive optics to other domains than military or astronomical applications.
Laserdot has been working on adaptive optics systems for over 15 years. The first applications were about laser beam control. This has led to the first kind of deformable mirrors we use for the correction and dithering of the wavefront. These mirrors may be cooled depending on the laser beam power. Lately, with the participation of different European institutions, this knowledge has been applied to astronomical imaging. The `Come On' project showed how interesting such a technique is. `Come On Plus,' the project to be carried out, will certainly improve these first results. At the same time, jointly with Francois Roddier and for astronomical purposes too, Laserdot has achieved some bimorph mirrors which are to be used with a curvature sensor. This paper aims to oversee the mechanical components which have been designed for these different studies.
A bimorph mirror seems to be low voltage, large strokes device which can be used as a correction mirror in an adaptive optics system for infrared applications. A few theoretical results are recalled and have been used to develop a numerical method to solve the displacements of a bimorph mirror supplied by a distribution of voltages. An example is given which involves seven electrodes; comparisons with theoretical and other numerical results are achieved.
This paper is a presentation of the so-called COME-ON adaptive optics prototype system developed jointly by four
European institutions. This system has been tested on the 1.52m telescope of the Observatoire de Haute Provence on
October 12 to 23 and November 13 to 24, 1989. Diffration-limited infrared imaging has been achieved during these first
tests. The adaptive optics system consists of a 19 actuator deformable mirror and a Hartmann-Shack type wavefront
sensor. In this instrument the wavefront sensing is performed at visible wavelengths while the correction is performed for
near infrared imaging (1 .2 to 5 .tm). Specialized computers drive the deformable mirror and a tip-tilt mirror. The
bandwidth of the servo-loop is 9 Hz at 0 dB point in open-loop. The results obtained with this instrument will be very
useful for the design of the future adaptive optics system for the ESO Very Large Telescope (VLT).
This paper is a presentation of the so-called COME-ON adaptive optics prototype system developed jointly by four European institutions. This system has been tested on the 1.52m telescope of the Observatoire de Haute Provence on October 12 to 23 and November 13 to 24, 1989. Diffraction-limited infrared imaging has been achieved during these first tests. The adaptive optics system consists of a 19 actuator deformable mirror and a Hartmann-Shack type wavefront sensor. In this instrument the wavefront sensing is performed at visible wavelengths while the correction is performed for near infrared imaging (1.2 to 5 rim). Specialized computers drive the deformable mirror and a tip-tilt mirror. The bandwidth of the servo-loop is 9 Hz at 0 dB point in open-loop. The results obtained with this instrument will be very useful for the design of the future adaptive optics system for the ESO Very Large Telescope (VLT).
A bimorph mirror seems to be a low voltage, large strokes device which can be used
as a correction mirror in an adaptive optics system for infrared applications.
A few theoretical results are recalled and have been used to develop a numerical
method to solve the displacements of a bimorph mirror supplied by a distribution of
voltages. An example is given which involves seven electrodes ; comparisons with
theoretical and other numerical results are achieved.
Same paper has been presented during the SPIE's 90 Symposium on Astronomical
Telescopes and Instrumentation for the 21st Century in February 1990.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.