The NIRSpec instrument on the James Webb Space Telescope (JWST) brings the first multi-object spectrograph (MOS) into space, enabled by a programmable Micro Shutter Array (MSA) of ∼250,000 individual apertures. During the 6-month Commissioning period, the MSA performed admirably, completing ∼800 reconfigurations with an average success rate of ∼96% for commanding shutters open in science-like patterns. We show that 82.5% of the unvignetted shutter population is usable for science, with electrical short masking now the primary cause of inoperable apertures. In response, we propose a plan to recheck existing shorts during nominal operations, which is expected to reduce the number of affected shutters. We also present a full assessment of the Failed Open and Failed Closed shutter populations, which both show a marginal increase in line with predictions from ground testing. We suggest an amendment to the Failed Closed shutter flagging scheme to improve flexibility for MSA configuration planning. Overall, the NIRSpec MSA performed very well during Commissioning, and the MOS mode was declared ready for science operations on schedule.
The Near-Infrared Spectrograph (NIRSpec) is one of the four focal plane instruments on the James Webb Space Telescope which was launched on Dec. 25, 2021. We present an overview of the as-run NIRSpec commissioning campaign, with particular emphasis on the sequence of activities that led to the verification of all hardware components of NIRSpec. We also discuss the mechanical, thermal, and operational performance of NIRSpec, as well as the readiness of all NIRSpec observing modes for use in the upcoming JWST science program.
JWST/NIRSpec will include the first space-borne multi-object spectrograph, comprising a micro-shutter array (MSA) of a quarter of a million closable apertures that can be individually addressed to select up to a couple of hundred objects within a ~3.2x3.4 arcmin field of view. Although more than ~85% of the unvignetted shutters are fully operational, the high degree of mechanical movement combined with complex circuitry on a small scale, inevitably leads to some non-operable shutters. In this paper we present an overview of the operability assessment concept for the MSA, employed during both ground tests and in flight. We describe the procedures used to detect, mitigate against, and even repair the non-operable shutters, and show the effect upon the multiplexing capability and output data from NIRSpec. We also present the operability trending results from ground tests, and discuss the probable impact on nominal operations after launch.
Maurice Te Plate, Stephan Birkmann, Marco Sirianni, Timothy Rawle, Catarina Alves de Oliveira, Torsten Böker, Elena Puga, Nora Lützgendorf, Anthony Marston, Peter Rumler, Peter Jensen, Giovanna Giardino, Pierre Ferruit, Ralf Ehrenwinkler, Peter Mosner, Hermann Karl, Martin Altenburg, Marc Maschmann, Robert Rapp, Corbett Smith, Patrick Ogle, Maria Pena Guerrero, Charles Proffitt, Rai Wu, Graham Kanarek, James Muzerolle
The James Webb Space Telescope (JWST) is frequently referred to as the follow-on mission to the Hubble Space Telescope (HST). The “Webb”, as it is often called, will be the biggest space telescope ever built and it will lead to astounding scientific breakthroughs. The observatory is currently scheduled for launch in 2020 from Kourou, French Guyana by an ESA provided Ariane 5 rocket. The Observatory houses four scientific instruments. One of them is NIRSpec, the multi-object Near Infrared Spectrograph, built for ESA by Airbus Defence and Space in Germany. After the JWST Optical telescope Element (OTE) integration and testing was completed in early 2016, the Integrated Science Instruments Module (ISIM) was integrated to the OTE in May 2016. The complete system of OTE and ISIM, now called OTIS, then successfully went through an acoustic and vibration test campaign at NASA Goddard Space Flight Center (GSFC). After this, the OTIS system was shipped to the Johnson Space Center (JSC) in Houston, TX, where a final 100+ days lasting cryogenic vacuum test was conducted inside the famous Thermal Chamber A. This paper presents NIRSpec’s hardware status and some preliminary test results from the OTIS test campaign.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.