Digital holographic microscopy (DHM) is a non-contact, profilometric tool that allows obtaining microscopic object topography from captured holograms. However, the use of DHM is limited when the object under observation has a high gradient or is discontinuous. Multi-angle digital holographic profilometry (MIDHP) is an alternative solution for overcoming this limitation for measuring the topography with discontinuities. This method combines digital holography and multi-angle interferometry. The method requires a certain number of holograms that are processed into longitudinal scanning function (LSF). The topography of the object is recovered by finding the maxima of the LSF. MIDHP enables to enlarge the measurement range and provides a high axial resolution. This paper investigates MIDHP to measure surfaces with various (low and high) surface gradients. The calculations of LSF requires many Fourier Transforms (FT) and the computations are slow. In this paper, we improve LSF calculations by introducing two algorithms. The first algorithm reduces number of FT needed by applying summation in frequency domain. Second approach applies the method of 3D filtering, which improves the quality of the reconstructed shape. The introduced approaches are verified both numerically and experimentally.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.