Continued lithographic scaling using high-NA EUV scanners requires materials and processes with sufficient resolution and stochastic performance to translate the aerial image into thin film photoresist material. Amongst these key processes is photoresist dissolution that converts latent exposure chemistry in the photoresist into a developed pattern. However, co-optimization of resist materials and the develop process is difficult due to the challenge of directly measuring resist dissolution at the nanometer spatial and sub-second temporal scales on which it occurs. Most metrology of the dissolution process thus ignores either the temporal component by measuring just the final developed structure, or the spatial component as is done in most dissolution rate monitoring experiments. To overcome these challenges, we have developed an in-situ dissolution rate monitoring technique using high-speed atomic force microscopy (AFM). As opposed to pioneering work using AFM to monitor the dissolution process, our technique incorporates the use of a specially-designed flow cell which provides precise control of the time at which developer is introduced to the photoresist material, as well as delivery of nearly full-strength developer in fractions of a second. Our system thus offers the ability to probe the spatially-dependent nature of the dissolution process at conditions close to those in the fab, providing insight into exposure-dependent dissolution rate gradient, material swelling, and other potentially lithographically relevant phenomena such as polymer entanglement. In doing so, we provide another technique to aid in the design and study of photoresist materials for future lithographic nodes.
New resists are needed to advance EUV lithography. Tailored design of efficient photoresist is impossible without fundamental understanding of EUV induced chemistry. Resists incorporating high cross-section elements efficiently utilize EUV photons via radiation absorption by core-level electrons, resulting in emission of primary electrons. However, this is only an initial step in the process. Auger emission, molecular fragmentation, and subsequent electron-resist interactions are also critical. Understanding all these steps is crucial to harness all the deposited energy for improved patterning results.
In this work, we present recent results of multimodal experimental approaches to study photoresist materials. To build our grasp of EUV photochemistry from the ground up we aim for understanding the whole variety of processes happening after absorption of an EUV photon by a single building block of resist material – a resist molecule. Model photoresist constituent molecules functionalized with halogen atoms, are isolated in the gas phase and exposed to tunable EUV radiation from the Advanced Light Source, Berkeley Lab and the direct processes are investigated by photoelectron spectroscopy and photoionization mass spectrometry. We quantify the performance of several candidate molecules in terms of photoemission cross-sections and electron yield per primary photoionization event. We demonstrate that some prototype resist molecules can emit several (photo- and Auger) electrons after single EUV photon absorption. Following the electron emission, the atomic relaxation leads to the molecule fragmentation, which also depends on the halogen functionalization. Secondary electron-driven reactions are studied by tunable electron impact ionization and dissociative electron attachment mass spectrometry. We demonstrate that even very low kinetic energy electrons may lead to the molecule dissociation.
While gas-phase studies do provide insight into the primary EUV photon or electron induced events in the individual resist molecules, we seek to understand these processes in the condensed phase as this is where industrially relevant processes will occur. We discuss techniques allowing for generation of resist nanoparticles of different morphology, representing either condensed resist or a substrate coated by a resist film. The same techniques, as applied to investigate resist’s building blocks, are used to study the condensed resist material, connecting our understanding of the fundamental phenomena from each isolated molecule to the solid state system.
KEYWORDS: Electron beam lithography, Scanning electron microscopy, Scanning probe microscopy, Chemistry, Calibration, Line scan image sensors, Electron beams, Atomic force microscopy, Lithography, Line edge roughness
One of the key challenges to high resolution resist patterning is probing the resist properties at length scales commensurate with the pattern size. Using a new scanning probe microscopy (SPM), Peak Force™ tapping, we map exposure dependent nanoscale modulus of the exposed/developed resist patterns with sub-10 nm resolution. By innovative electron beam exposure pattern design, the SPM technique reveals that resist modulus follows the height contrast profile, but with a shift to higher exposure doses. SEM image analysis of patterned resist structures confirm that the best line-space patterns are achieved at exposure dose where modulus reaches its maximum and shows how modulus can be used to probe patternability of resist systems.
EUV lithography is needed by the semiconductor industry for both its resolution and for the process simplification it provides compared to multiple patterning. However it needs innovations to make it a success. One area where innovation is needed is resist performance. Resists that are commercially available for EUV use are typically based on conventional chemically amplified resist chemistry. So far, this has not provided the required performance at fast enough photo speed. Many innovative resist systems have been introduced in the last few years that have novel mechanisms and/or incorporate novel chemical elements with high EUV absorbance. These new systems are promising enough for EUV use that work on many of them now needs to shift to characterizing their functional parameters and optimizing their performance. For the future, new systems beyond these will have to focus on reducing the inherent noise in resist imaging. The concept of pixelated resists is introduced and it is suggested pixelated resists are one possible avenue for imaging sub 10nm features with sufficient feature size and profile control.
One of the key challenges to high resolution resist patterning is pattern collapse. Using a new scanning probe microscopy (SPM), Peak ForceTM tapping, we map nano-mechanical properties-- modulus, adhesion, and dissipation-- of the exposed/developed resist structures with sub-10 nm resolution. Properties are compared across a carbon based negative resist with and without cross-linking. The SPM technique reveals that cross-linking significantly enhances the mechanical properties to give a champion resolution of sub 20 nm half-pitch in a chemically amplified negative resist system. Beyond mechanical properties, surface morphology and redistribution kinetics were examined using complementary techniques and reveal additional benefits with cross-linking.
Here, we report the highest recorded resolution for a negative-tone, carbon-based, chemically amplified (CA) resist of 20 nm half-pitch (HP) using both E-beam and EUV exposure systems. The new chemistry incorporates variable amounts of oxetane (0, 5, 10 and 20%) cross-linker into a base of Noria-MAd (methyl-admantane) molecular resist. Cross-linkable resists showed simultaneous improvements in surface energy, structural integrity, and swelling to ensure collapse free 20nm HP patterns and line-edge roughness (LER) down to 2.3 nm. EUV exposed Noria-Ox (5%) cross-linked resist patterns demonstrated 5 times improvement in Z-factor (for 24 nm HP) over Noria-MAd alone.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.