AWE’s Orion Laser facility contains ten nanosecond beamlines, each employing a series of flash-lamp pumped disk amplifiers capable of generating up to 750 J in 1 ns at 1053 nm. Discharge through the flash-lamps, however, causes unwanted disk heating which induces wavefront aberrations. This immediate effect, referred to as ‘prompt aberration’, alters the onshot wavefront compared to the wavefront of the alignment beams. In addition, a thermal load remains on the disks between shots, causing an evolution of both the alignment and on-shot aberrations over a typical day. The combination of the prompt aberrations and wavefront evolution has limited performance. After approximately six shots the alignment aberrations became so severe that further alignment was impossible. Operations would then cease to allow the disks to cool and the wavefronts to return to normal for the start of the following day. This paper reports on the development and implementation of static wavefront correctors. By mitigating the effect of the prompt aberrations, the alignment beam wavefront better matches the on-shot aberrations, and no longer limits operations, allowing more shots to be fired in a day. The wavefront analysis is discussed and shows the prompt aberration to comprise mainly of ~1 μm of defocus and astigmatism, averaged across many shots and all beamlines. Compensating static correctors are shown to reduce the effect of the prompt aberration to ~0.2 μm. The outcome indicates the possibility of firing more shots in a single day’s operation.
AWE’s Orion Laser Facility comprises ten 500J nanosecond (“long pulse”) beam lines (3ω) and two petawatt (“short pulse”) beam lines, each delivering 500J, 500fs pulses at 1054nm. One short pulse beam can operate at 2ω (at reduced aperture), producing ultrahigh contrast pulses. This paper reports on recent developments and planned future work. Static wavefront correctors have been implemented to mitigate prompt aberrations in the long pulse beams, which alter the onshot wavefront characteristics compared to the CW alignment beams. This mitigates aberration accumulation through the day, increasing the maximum number of shots in one shift. A TIM-mounted wavefront sensor/focal imager has been developed, which is better able to characterise the post-compression system aberrations, resulting in higher focal intensity. A diode-pumped, multi-joule rod amplifier has been prototyped. This is planned to replace the ageing, flashlamp-based ns-OPCPA pump laser, which constitutes a single point failure mode for our short pulse capability. Preliminary design work has commenced for a facility life-extension project, planned for ~2023. The infrared performance will be enhanced to ~1kJ per beam in 300fs, the additional bandwidth being supported by greater use of silicate glass. The two-grating, single-pass compressor systems will be replaced by four-grating compressors, retaining the extant vacuum vessels. The frequency doubling option will be retained. Since the greater near-field intensity inevitably over-drives the doublers, compressor detuning is necessary. We assess a novel, small compressor at the second harmonic. Simulations suggest that up to 500J in 150fs is possible in this configuration.
The use of solid targets irradiated in a vacuum target chamber by focussed high energy, high power laser beams to study the properties of matter at high densities, pressures and temperatures are well known. An undesirable side effect of these interactions is the generation of plumes of solid, liquid and gaseous matter which move away from the target and coat or physically damage surfaces within the target chamber. The largest aperture surfaces in these chambers are usually the large, high specification optical components used to produce the extreme conditions being studied [e.g. large aperture off axis parabolas, aspheric lenses, X ray optics and planar debris shields]. In order to study these plumes and the effects that they produce a set of dedicated experiments were performed to evaluate target by product coating distributions and particle velocities by a combined diagnostic instrument that utilised metal witness plates, polymer witness plates, fibre velocimetry and low density foam particle catchers.
P. Treadwell, P. Allan, N. Cann, C. Danson, S. Duffield, S. Elsmere, R. Edwards, D. Egan, M. Girling, E. Gumbrell, E. Harvey, M. Hill, D. Hillier, D. Hoarty, L. Hobbs, N. Hopps, D. Hussey, K. Oades, S. James, M. Norman, J. Palmer, S. Parker, D. Winter, T. Bett
The Orion Laser Facility at AWE in the UK consists of ten nanosecond beamlines and two sub-picosecond beamlines. The nanosecond beamlines each nominally deliver 500 J at 351 nm in a 1 ns square temporal profile, but can also deliver a user-definable temporal profile with durations between 0.1 ns and 5 ns. The sub-picosecond beamlines each nominally deliver 500 J at 1053 nm in a 500 fs pulse, with a peak irradiance of greater than 1021 W/cm2. One of the sub-picosecond beamlines can also be frequency-converted to deliver 100 J at 527 nm in a 500 fs pulse, although this is at half the aperture of the 1053 nm beam. Commissioning of all twelve beamlines has been completed, including the 527 nm sub-picosecond option. An overview of the design of the Orion beamlines will be presented, along with a summary of the commissioning and subsequent performance data. The design of Orion was underwritten by running various computer simulations of the beamlines. Work is now underway to validate these simulations against real system data, with the aim of creating predictive models of beamline performance. These predictive models will enable the user’s experimental requirements to be critically assessed ahead of time, and will ultimately be used to determine key system settings and parameters. The facility is now conducting high energy density physics experiments. A capability experiment has already been conducted that demonstrates that Orion can generate plasmas at several million Kelvin and several times solid density. From March 2013 15% of the facility operating time will be given over to external academic users in addition to collaborative experiments with AWE scientists.
The Orion laser facility at AWE in the UK began operations at the start of 2012 to study high energy density physics. It consists of ten nanosecond beam lines and two sub-picosecond beam lines. The nanosecond beam lines each deliver 500 J per beam in 1ns at 351nm with a user-definable pulse shape between 0.1ns and 5ns. The short pulse beams each deliver 500J on target in 500fs with an intensity of greater than 1021 Wcm-2 per beam. All beam lines have been demonstrated, delivering a pulse to target as described. A summary of the design of the facility will be presented, along with its operating performance over the first year of experimental campaigns. The facility has the capability to frequency-double one of the short pulse beams, at sub aperture, to deliver a high contrast short pulse to target with up to 100J. This occurs post-compression and uses a 3mm thick, 300mm aperture KDP crystal. The design and operational performance of this work will be presented. During 2012, the laser performance requirements have been demonstrated and key diagnostics commissioned; progress of this will be presented. Target diagnostics have also been commissioned during this period. Also, there is a development program under way to improve the contrast of the short pulse (at the fundamental) and the operational efficiency of the long pulse. It is intended that, from March 2013, 15% of facility operating time will be made available to external academic users in addition to collaborative experiments with AWE scientists.
Project Orion will provide a facility for performing high energy density plasma physics experiments at AWE. The laser
consists of ten, nanosecond beam lines delivering a total of 5kJ with 0.1-5ns temporally shaped pulses and two short
pulse beam lines, each producing 500J in 0.5ps with intensity > 10^21 W/cm^2. The performance of the Orion laser is
reported as the first phase of commissioning (one short and one long pulse beam) concludes. Target shots with all beam
lines will begin in 2012.
Orion is a new laser facility under construction at AWE for studying high energy density physics whose design has been
underwritten by modelling various aspects of the beamlines. For the long pulse beams this has included the frequency
conversion process from the first to the third harmonic. The need to take account of the effect of the phase modulation
applied for Smoothing (of the output focal spot) by Spectral Dispersion (SSD) has led to the development of a four-dimensional
(x,y,z,t) frequency conversion code. The code uses a split-step approach, considering diffraction, walk-off,
coupled waves, wavefront error, angular dispersion, self-phase modulation, and group velocity dispersion. The code's
performance is demonstrated using an idealised input beam and the Orion frequency conversion crystal design. Without
the presence of phase modulation, the code reports a third harmonic conversion efficiency of 79.2%. With phase
modulation, a conversion efficiency of between 70.3% and 71.6% is reported, depending on the directions of applied
angular dispersion. The smoothing of the focal spot as a function of time using a kinoform phase plate is also
demonstrated based on the 2D-SSD system to be used on Orion. The contrast ratio of the focal spot is shown to reduce
by a factor of 5 within the first 0.2 ns, and to reach 7% by the end of the 1.25 ns time window.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.