Wideband detectors are becoming more and more widely used. In order to expand the response wavelength of silicon detectors, single-layer and double-layer antireflection coatings are used, and combined with the high gain characteristics of silicon avalanche photodetectors (APDs), their response band is extended to the range of 250-1100nm. Simulation analysis shows that the double layer antireflection coating has larger infrared enhancement than the single layer anti reflection coating. The Si APD with this structure can achieve high response from UV 250nm to 1100nm with multiplication, enabling efficient detection in the UV-visible-near-infrared band.
With the development of optoelectronic technology, InGaAs/InP avalanche photodiodes (APDs) are more and more used in fiber-optic communication systems with high bit rates and long-distance transmission because of their advantages of high sensitivity, low noise, and high speed. When etching mesa-type InGaAs/InP APDs, the edges of the mesa sidewalls are susceptible to premature breakdown due to the increased electric field, which affects the device's performance. In this paper, a shallow-etched mesa-type InGaAs/InP APD with a guard ring structure is proposed in order to suppress edge breakdown. By using Silvaco TCAD software for simulation, the results show that the structure proposed in this paper can limit the active region in the center region, effectively suppress the edge electric field, make the electric field distribution more uniform, and suppress the uncertainty of breakdowns, so that the reliability of the device is greatly increased. The final optimized device has a punch-through voltage of 16 V and a breakdown voltage of 41.3 V. The device has a diameter of 80 μm. The dark current is about 2.02 nA, and the gain is 36 when the breakdown voltage is 95%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.