To improve environmental adaptability, an optical system with passive optical athermalization was designed. This system adopts a transmission structure with a spectral range of 0.4-1.0μm, a focal length of 166mm, a F number of 3.7 and a field view of 5°. An optical system with passive optical athermalization should satisfy three constraints. The first is the power distribution of each lens. The second is the achromatic equation. The last one is the athermal equation. A reasonable optical material combination is obtained by solving the three conditional equations. Then the initial optical system is simulated and optimized by Zemax. In the end, this system gains good imaging quality in the working temperature range of 10-30°C.
A measurement system for diffraction efficiency of convex gratings is designed. The measurement system mainly
includes four components as a light source, a front system, a dispersing system that contains a convex grating, and a
detector. Based on the definition and measuring principle of diffraction efficiency, the optical scheme of the
measurement system is analyzed and the design result is given. Then, in order to validate the feasibility of the designed
system, the measurement system is set up and the diffraction efficiency of a convex grating with the aperture of 35 mm,
the curvature-radius of 72mm, the blazed angle of 6.4°, the grating period of 2.5μm and the working waveband of
400nm-900nm is tested. Based on GUM (Guide to the Expression of Uncertainty in Measurement), the uncertainties
in the measuring results are evaluated. The measured diffraction efficiency data are compared to the theoretical ones,
which are calculated based on the grating groove parameters got by an atomic force microscope and Rigorous Couple
Wave Analysis, and the reliability of the measurement system is illustrated. Finally, the measurement performance of the
system is analyzed and tested. The results show that, the testing accuracy, the testing stability and the testing
repeatability are 2.5%, 0.085% and 3.5% , respectively.
With the intrinsic advantages of high diffraction efficiency, signal to noise ratio, wavelength and angular selectivity, and low scattering and absorption, volume phase holographic grating (VPHG) has been widely used for spectroscopy, telecommunications, astronomy and ultra-fast laser sciences. The transmission VPHG combined with on-axis imaging lenses can be used in the Raman spectroscopic imaging, which enables a spectrometer to work at high resolution over a wide field of view, and compresses the configuration to achieve very little vignetting. The subject of this paper is to design a kind of transmission VPHG used in Raman Spectrometer with high diffraction efficiency theoretically. According to the Bragg condition and the coupled wave theory, the diffraction efficiency of transmission VPHG recorded on dichromated gelatin (DCG) has been optimized by using G-solver software, which is applicable to the visible waveband ranging from 0.46μm to 0.70μm. The effects of the recording and reconstruction setup parameters, the amplitude of the index modulation (Δn) and the thickness of the gelatin layer (d), and the polarization state of reconstruction beams on the diffraction efficiency properties of the gratings are analyzed at the same time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.