For the sake of the increasing demands of oil and gas essential, scientists and engineers have exerted great efforts in obtaining natural resources deposited in the deep water. Risers, as the channel between platform and wellhead, play a key role in oil and gas transportation. Subjected to coarse environmental conditions and uncertain loading patterns, risers would display complex dynamic behaviors which could result in severe fatigue damages. Recently, riser response is commonly measured using passive and durable Fiber Bragg Grating (FBG) strain sensors for industry safety, especially for Integrity Management (IM). However, for technique difficulties as well as economical consideration, it is impossible to execute distributed fatigue monitoring on the whole riser, which makes it essential to find out an optimized method utilizing the least number of sensors and reconstruct the global response of risers. This paper propose a method which combines H2 norms and Kalman filter to give optimal state estimation of risers based on limited FBG-based dynamic strain information. The H2 norms are used to give guideline for optimized sensor placement. Meanwhile, Kalman filter realize the global response reconstruction of risers as well as minimize the environmental disturbance. The accuracy and efficiency of the method has been verified by a numerical case. This study provides an FBG-based early warning technique for industry application of deepwater risers in future.
Ice structures provide load-bearing capability for energy exploitation and transportation in cold regions. Meanwhile, staff and facilities take a risk due to large amounts of distributed macrocracks in ice roads, ice bridges, and ice platforms. It is critical to monitor macrocracks for detecting and understanding the fracture process under such a harsh environment. Aiming to obtain real-time, long-term, and quantitative crack opening information for ice structures, this paper presents a feasibility study on monitoring macrocracks with a low modulus polymer packaged optical fiber sensor. Brillouin optical time-domain analysis-based sensing technology is utilized for the distributed strain measurement. According to in situ monitoring requirements, a type of silicone rubber material with appropriate mechanical properties is selected to fabricate the sensor. On this basis, a strain transfer analysis on the packaged and embedded sensor is carried out to derive the relation between the optical measurement and the increment of the crack width. The prototypes have been evaluated by demonstration tests on a tensile device and an ice road model. The experimental results show the sensor can survive in a cold environment and under the large strain resulting from the macrocrack opening. These measured data agree well with the linear calibration. The macrocracks opening in large-scale ice structures can be characterized based on the optical sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.