Tai chi is a traditional Chinese sport, which is popular all over the world. It is expressed by slow, soft, and continuously flowing moves. At present, studies on action recognition are generally aimed at common actions, such as walking, jumping. These algorithms are not very suitable for Tai chi recognition. Because Tai chi actions have unique characteristics. Through careful analysis of Tai chi moves and research of existing Tai chi dataset, we propose and build a Tai chi dataset, named Sub-Tai chi. This dataset is based on joints and skeleton, consisting of 15 representative basic actions of different body parts. For Tai chi action recognition, we use Structural LSTM with Attention Module, which is an action recognition method based on neural network. We use RNN to capture action features and use the full connected layer to classify actions. In this paper, we introduce the velocity features and acceleration features to improve Tai chi actions. Experimental results show that the method proposed in this paper has accuracy about 79%, which is nearly 7% higher than the original algorithm.
In this paper, the Spatio-Temporal graph of Structural-RNN[6] is developed and applied to action recognition task. We proposed a Structural-Attentioned LSTM network by adding joints, changing the specific connection mode in the original spatio-temporal graph, and introducing attention mechanism to enable the network to select edges with best representation of action automatically. We take multiple experiments on the public dataset JHMDB[10] to verify the validity of our model, achieved good results when only limited features were used.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.