KEYWORDS: Electrodes, Data integration, Data modeling, Brain stimulation, Surgery, Brain, Magnetic resonance imaging, Distance measurement, 3D modeling, Electrophysiology, 3D acquisition, 3D metrology
Intraoperative microelectrode recordings (MER) have been used for several decades to guide neurosurgeons during the implantation of Deep Brain Stimulation (DBS) electrodes, especially when targeting the subthalamic nucleus (STN) to suppress the symptoms of Parkinson’s Disease. The standard approach is to use an array of up to five MER electrodes in a fixed configuration. Interpretation of the recorded signals yields a spatially very sparse set of information about the morphology of the respective brain structures in the targeted area. However, no aid is currently available for surgeons to intraoperatively integrate this information with other data available on the patient’s individual morphology (e.g. MR imaging data used for surgical planning). This integration might allow surgeons to better determine the most probable position of the electrodes within the target structure during surgery. This paper suggests a method for reconstructing a surface patch from the sparse MER dataset utilizing additional a priori knowledge about the geometrical configuration of the measurement electrodes. The conventional representation of MER measurements as intervals of target region/non-target region is therefore transformed into an equivalent boundary set representation, allowing ecient point-based calculations. Subsequently, the problem is to integrate the resulting patch with a preoperative model of the target structure, which can be formulated as registration problem minimizing a distance measure between the two surfaces. When restricting this registration procedure to translations, which is reasonable given certain geometric considerations, the problem can be solved globally by employing an exhaustive search with arbitrary precision in polynomial time. The proposed method is demonstrated using bilateral STN/Substantia Nigra segmentation data from preoperative MRIs of 17 Patients with simulated MER electrode placement. When using simulated data of heavily perturbed electrodes and subsequent MER measurements, our optimization resulted in an improvement of the electrode position within 1 mm of the ground truth in 80.29% of the cases.
Statistical shape models based on point distribution models are powerful tools for image segmentation or shape analysis. The most challenging part in the generation of point distribution models is the identification of corresponding landmarks among all training shapes. Since in general the true correspondences are unknown, correspondences are frequently established under the hypothesis that correct correspondences lead to a compact model, which is mostly tackled by continuous optimisation methods. In favour of the prospect of an efficient optimisation, we present a simplified view of the correspondence problem for statistical shape models that is based on point-set registration, the linear assignment problem and mesh fairing. At first, regularised deformable point-set registration is performed and combined with solving the linear assignment problem to obtain correspondences between shapes on a global scale. With that, rough correspondences are established that may not yet be accurate on a local scale. Then, by using a mesh fairing procedure, consensus of the correspondences on a global and local scale among the entire set of shapes is achieved. We demonstrate that for the generation of statistical shape models of deep brain structures, the proposed approach is preferable over existing population-based methods both in terms of a significantly shorter runtime and in terms of an improved quality of the resulting shape model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.