Helicopter-based spectral radiance measurements over several homogeneous ground targets were performed with a portable calibrated spectrometer covering the wavelength region 400- 1000 nm. The flight altitude was varied from 200 to 1000 m and radiance spectra were collected in altitude steps of 200 m. Up to 20 spectra were collected for each flight level to evaluate average and standard deviation for homogeneity. For the grass and concrete target, ground reflectance measurements were performed shortly before and after the airborne radiance spectra were acquired. Meteorological data from a local DLR weather station is used as input for the MODTRAN radiative transfer code. The measurements of airborne radiance spectra are intended to support the inflight calibration of the hyperspectral DAIS sensor. Results of measured and modeled radiance spectra are presented and discussed.
The mid-infrared airborne CO2 laser spectrometer (MIRACO2LAS) was developed by CSIRO Division of Exploration and Mining to investigate the potential role of high spectral resolution thermal infrared (TIR) remote sensing for improved remote sensing of minerals, especially those silicate minerals that do not have diagnostic features at shorter wavelengths, such as quartz, feldspars, pyroxenes and garnets. Other objectives include testing and validating methods used to separate the mineralogically significant emissivity from temperature effects in passive TIR systems, as MIRACO2LAS reflectance data are unaffected by surface temperature effects. MIRACO2LAS uses a CO2 laser, which scans through 100 wavelengths between 9.1 and 11.2 micrometers, as a light source for 'active' remote sensing. The laser system is sufficiently rapidly tuned to allow the airborne system to operate in a line profile mode, producing contiguous ground reflectance spectra for a footprint (or pixel) diameter of 2 meters. Typical airborne data are presented, demonstrating successful identification of a number of minerals. A laboratory carbon-dioxide laser spectrometer system has also been developed to validate the MIRACO2LAS spectral signatures and to construct reference spectral libraries of pure minerals and other materials. Besides the compositional influence on the reflectance spectra, physical parameters, such as grain size and grain shape, are shown to affect the reflectance spectra. Plant materials, many of which depart significantly from blackbody behavior for different leaf orientations and arrangements, are also investigated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.