Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 μm band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (λc ∼ 5 μm at 98K), MWIR (λc ∼ 9 μm at 98K) and LWIRs (λc ∼ 15.5 μm at 81K) bands in three Focal Plane Array Assemblies (FPAAs).
GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 μm to 8.6 μm and (iii) a 9.6 μm to 13.3 μm, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 μm to 0.86 μm channels. The thirteen channels above 1 μm are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 μm to 9.61 μm channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 μm to 13.3 μm channels fabricated in Double layer planar heterostructure (DLPH) detectors. This is the same architecture used for the CrIS detectors.
CrIS detectors are 850 μm diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak wavelength are ≥ 5.0E+10 Jones for LWIR, ≥ 9.3E+10 Jones for MWIR and ≥ 3.0E+11 Jones for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 μm, 1.0 x 1011 cm-Hz1/2/W at 8.0 μm and 3.1 x 1011 cm-Hz1/2/W at 4.64 μm.
Silicon photon detectors and focal plane arrays (FPAs) are fabricated in many varieties1,2. Their function depends on the detector architecture, dopants, and operating temperature. DRS has fabricated silicon pin detectors that cover the visible spectral range and blocked impurity band (BIB) detectors that cover the very-long-wavelength infrared (VLWIR) region3. Imaging arrays of silicon pin-diodes utilize the intrinsic bandgap of silicon to provide high photo response over the 0.4 – 1.0 μm spectral range. The detectors operate at or near room temperature as required. Silicon pin-diode arrays are particularly attractive as an alternative to charge-coupled devices (CCDs) for space applications where radiation hardening is needed. Pros and cons of CCD and pin diode architectures are listed in Reference4.
KEYWORDS: Sensors, Modulation transfer functions, Monte Carlo methods, Data modeling, Mercury cadmium telluride, Diffusion, Fourier transforms, Short wave infrared radiation, Photons, Metals
The photocurrent of High Density Vertically Integrated Photodiodes (HDVIP) manufactured in LPE grown SWIR
(λc ~ 2.5 μm) HgCdTe material is modeled as a function of incident spot location using a Monte Carlo diffusion
calculation in the p-type bulk. The Monte Carlo calculation assumes a 3 x 3 mini-array of detectors surrounded by
guard detectors. Carriers generated in the n-regions are always collected. The result is a responsivity map that yields
the individual detector "spot scan" profile that is then used to calculate the detector modulation transfer function
(MTF). Fourier transforms of detector "spot scan" response profile provided experimental confirmation of MTF that
corresponded to the Monte Carlo modeled MTF.
DRS uses LPE-grown SWIR, MWIR and LWIR HgCdTe material to fabricate High-Density Vertically Integrated
Photodiode (HDVIP) architecture detectors. 2.5 μm, 5.3 μm and 10.5 μm cutoff detectors have been fabricated into
linear arrays as technology demonstrations targeting remote sensing programs. This paper presents 320 x 6 array
configuration technology demonstrations' performance of HDVIP HgCdTe detectors and single detector noise data. The
single detector data are acquired from within the 320 x 6 array. Within the arrays, the detector size is 40 μm x 50 μm.
The MWIR detector array has a mean quantum efficiency of 89.2% with a standard deviation to mean ratio, σ/μ = 1.51%. The integration time for the focal plane array (FPA) measurements is 1.76 ms with a frame rate of 557.7 Hz.
Operability values exceeding 99.5% have been obtained. The LWIR arrays measured at 60 K had high operability with
only ~ 3% of the detectors having out of family response. Using the best detector select (BDS) feature in the read out
integrated circuit (ROIC), a feature that picks out the best detector in every row of six detectors, a 320 x 1 array with
100% operability is obtained. For the 320 x 1 array constituted using the BDS feature, a 100% operable LWIR array
with average NEI value of 1.94 x 1011 ph/cm 2/s at a flux of 7.0 x 1014 ph/cm2/s has been demonstrated.
Noise was measured at 60 K and 50 mV reverse bias on a column of 320 diodes from a 320 x 6 LWIR array.
Integration time for the measurement was 1.76 ms. Output voltage for the detectors was sampled every 100th frame.
32,768 frames of time series data were collected for a total record length of 98 minutes. The frame average for a
number of detectors was subtracted from each detector to correct for temperature drift and any common-mode noise.
The corrected time series data was Fourier transformed to obtain the noise spectral density as a function of frequency.
Since the total time for collecting the 32,768 time data series points is 98.0 minutes, the minimum frequency is 170 μHz.
A least squares fit of the form (A/f + B) is made to the noise spectral density data to extract coefficients A and B that
relate to the 1/f and white noise of the detector respectively. In addition noise measurements were also acquired on
columns of SWIR detectors. Measurements were made under illuminated conditions at 4 mV and 50 mV reverse bias
and under dark conditions at 50 mV reverse bias. The total collection time for the SWIR detectors was 47.7 minutes.
The detectors are white noise limited down to ~10 mHz under dark conditions and down to ~ 100 mHz under
illuminated conditions.
Remote sensing programs require detectors with a variety of wavelengths. One example of remote sensing applications is the GOES-ABI program that requires linear arrays of detectors with cutoff wavelengths ranging from the visible to the VLWIR (λc ~ 15 μm). In order to target the variety of remote sensing applications, an internal task was conducted to develop detectors and linear arrays operating under nominal remote sensing applications. SWIR [λc(295 K) ~ 2.5 μm] test detectors have been measured as a function of temperature between 170 K and 295 K. At 200 K the RoA values are in the 106 ohm-cm2 range. MWIR [λc(60 K) = 5.3 μm] and LWIR [λc(60 K) = 10.5 μm] HgCdTe detectors in a 320 x 6 array format have also been measured at 60 K. Within the arrays, the detector size is 40 μm x 50 μm. The MWIR detector array has a mean quantum efficiency of 89.2 % with a standard deviation to mean ratio, σ/μ = 1.51 %. The integration time for the focal plane array (FPA) measurements is 1.76 ms with a frame rate of 557.7 Hz. Operability values exceeding 99.5 % have been obtained. In addition, test diodes at the edge of the array that did not go through a read out integrated circuit (ROIC) were also measured and had quantum efficiency ~ 86 % that agreed well with the ~ 87 % quantum efficiency measured for detectors in the array that were located near the test detectors. The LWIR arrays, measured at 60K also had high operability with only ~ 3 % of the detectors having out of family response. Using best detector select (BDS) feature in the read out integrated circuit (ROIC), a feature that picks out the best detector in every row of six detectors, a 320 x 1 array with 100 % operability is obtained. For the 320 x1 array constituted using the BDS feature, a 100 % operable LWIR array with average NEI value of 1.94x1011 ph/cm2/s at a flux of 7.0x1014 ph/cm2/s has been demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.