The Joint Polar Satellite System (JPSS) is a joint NOAA/NASA mission comprised of a series of polar orbiting weather and climate monitoring satellites which will fly in a sun-synchronous orbit, with a 1330 equatorial crossing time. JPSS resulted from the decision to reconstitute the National Polar-orbiting Operational Environmental Satellite System (NPOESS) into two separate programs, one to be run by the Department of Defense (DOD) and the other by NOAA. This decision was reached in early 2010, after numerous development issues caused a series of unacceptable delays in launching the NPOESS system.
MIRI is one of four instruments to be built for the James Webb Space Telescope. It provides imaging, coronography and
integral field spectroscopy over the 5-28.5um wavelength range. MIRI is the only instrument which is cooled to 7K by a
dedicated cooler, much lower than the passively cooled 40K of the rest of JWST, and consists of both an Optical System
and a Cooler System. This paper will describe the key features of the overall instrument design and then concentrate on
the status of the MIRI Optical System development. The flight model design and manufacture is complete, and final
assembly and test of the integrated instrument is now underway. Prior to integration, all of the major subassemblies have
undergone individual environmental qualification and performance tests and end-end testing of a flight representative
model has been carried out. The paper will provide an overview of results from this testing and describe the current
status of the flight model build and the plan for performance verification and ground calibration.
The Mid Infrared Instrument (MIRI), one of the four instruments on the Integrated Science Instrument Module (ISIM) of
the James Webb Space Telescope (JWST), supports all of the science objectives of the observatory. MIRI optical
alignment is an important step in the verification process, directly affecting mission success. The MIRI optical alignment
is verified on the ground at the integrated ISIM level using an element in the MIRI Filter Wheel, the pupil alignment
reference (PAR), developed by NASA GSFC and provided to MIRI. It is a ~2.3g aluminum piece that has a flat,
specularly reflective, 3mm diameter surface in its center, with laser-etched fiducials within its aperture. The PAR is
illuminated via an optical stimulus (ground support equipment) and imaged using a pupil imaging camera, during the
ISIM test program in order to determine absolute and relative changes in the alignment that impact pupil shear and roll.
Here we describe the MIRI PAR; its physical properties and challenges during its design, manufacturing, and testing.
MIRI is the mid-IR instrument for the James Webb Space Telescope and provides imaging, coronography and integral
field spectroscopy over the 5-28μm wavelength range. MIRI is the only instrument which is cooled to 7K by a dedicated
cooler, much lower than the passively cooled 40K of the rest of JWST, which introduces unique challenges. The paper
will describe the key features of the overall instrument design. The flight model design of the MIRI Optical System is
completed, with hardware now in manufacture across Europe and the USA, while the MIRI Cooler System is at PDR
level development. A brief description of how the different development stages of the optical and cooling systems are
accommodated is provided, but the paper largely describes progress with the MIRI Optical System. We report the
current status of the development and provide an overview of the results from the qualification and test programme.
The Mid-Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST) is developed in a partnership between
JPL and a large European Consortium (EC) for delivery via ESA to the JWST project at NASA's Goddard Space Flight
Center (GSFC). The four parties have created an effective management and system engineering structure to deal with
distributed and international management, system engineering, and testing teams. This paper describes the organizational
and team structure created to manage and develop MIRI in an efficient and productive manner. This paper also addresses
the challenges and subsequent solutions for merging sometimes disparate cultures and approaches to managing technical
programs.
The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical
functions and the environment for the four science instruments on JWST. This complex system development across
many international organizations presents unique challenges and unique solutions. Here we describe how the
requirement flow has been coordinated through the documentation system, how the tools and processes are used to
minimize impact to the development of the affected interfaces, how the system design has matured, how the design
review process operates, and how the system implementation is managed through reporting to ensure a truly world class
scientific instrument compliment is created as the final product.
The space telescope imaging spectrograph (STIS) was designed as a versatile spectrograph capable of maintaining or exceeding the spectroscopic capabilities of both the Goddard High Resolution Spectrograph and the Faint Object Spectrograph (FOS) over the broad bandpass extending from the UV through the visible. STIS achieves performance gains over the aforementioned first generation Hubble Space Telescope instruments primarily through the use of large a real detectors in both the UV and visible regions of the spectrum. Simultaneous spatial and spectral coverage is provided through long slit or slitless spectroscopy. This paper will review the detector design and in-flight performance. Attention will be focussed on the key issue of S/N performance. Spectra obtained during the first few months of operation, illustrate that high signal-to-noise spectra can be obtained while exploiting STIS's multiplexing advantage. From analysis of a single spectrum of GD153, with counting statistics of approximately 165, a S/N of approximately 130 is achieved per spectral resolution element in the FUV. In the NUV a single spectrum of GRW + 70D5824, with counting statistics of approximately 200, yields a S/N of approximately 150 per spectral resolution element. An even higher S/N capability is illustrated through the use of the fixed pattern split slits in the medium resolution echelle modes where observations of BD28D42 yield a signal-to-noise of approximately 250 and approximately 350 per spectral resolution element in the FUV and NUV respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.