The possibility of fabricating all-fiber nonlinear devices based on periodically poled silica fibers allows for overcoming most of the issues of free space nonlinear optics, such as thermal instabilities and high costs of nonlinear crystals. In this talk the most recent results related to the topic are presented, including some interesting applications of periodically poled fibers, such as the generation of high harmonics and of Frequency Combs when exploited in cavity configuration.
This Conference Presentation, Composite material glass photonics: from 2D materials to catalysts inside active optical fibres, was recorded at Photonics Europe Strasbourg France.
SnO2-based glass-ceramics activated by rare earth ions have been extensively investigated because of the need to develop reliable fabrication protocols and clarify some interesting optical, structural, and spectroscopic features of the system. There is one important weakness in glass photonics when the rare earth ions are employed as luminescent sources. This is the low absorption cross section of the electronic states of the rare earth ions. A sensitizer is therefore requested. In the last years, we demonstrated that SiO2-SnO2 glass ceramics, presenting a strong absorption cross section in the UV range due to the SnO2 nanocrystal, are effective rare earth ions sensitizers. Another interesting property of the SiO2-SnO2 system is its photorefractivity. The high photorefractivity of sol-gel-derived SnO2-SiO2 glass-ceramic waveguides has been demonstrated in several papers published by our consortium. It has been shown that the UV irradiation induces refractive index change allowing the direct writing of both channel waveguides and Bragg gratings.
The results presented in this communication not only demonstrate the viability and outstanding properties of the SiO2- SnO2 glass-ceramics for photonic applications but also put the basis for the fabrication of solid state and integrated lasers. The next steps of the research are the fabrication of the channels and mirrors exploiting the photorefractivity as well as to draw glass ceramic fiber, checking the lasing action and corresponding functional characteristics. Finally, it is worth noting that the dynamic of the energy transfer from the nanocrystals to the rare earth ions is still an exciting open question.
We have recently developed a novel electro-optic modulator via external electrical gating of 2D MoS2 bilayers deposited within the inner regions of a silica hollow core anti-resonant fiber. The MoS2 film acts as the electro-optically active material, responding with increased absorption of waveguided modes when in the presence of an externally applied electric field. The bilayer is formed via a liquid phase deposition method, in which the single source precursor ammonium tetrathiomolybdate is thermally decomposed into MoS2. The device has to date demonstrated modulation depths of >3.5dB, at an operating DC voltage of 1500 V with an optical insertion loss of 7.5dB. We have thus developed a novel, active, composite material anti-resonant fiber (CM-ARF) technology platform, which despite high voltage requirements, show excellent potential for all-fiber electro-optical design and operation.
Thermal poling, a technique to create permanently effective second-order susceptibility in silica optical fibers, has recently been improved by the discovery of an “induction poling” technique1 and the adoption of liquid electrodes2, allowing for poling fibers of any length and geometry. Nevertheless, the nonlinearity created via thermal poling is always limited by the 𝜒(3)of the optical fiber material and by the maximum electric field that can be frozen inside the glass. For these reasons research is ongoing to determine routes for further improving the nonlinear effects due to the thermal poling process. In this work, we propose to enhance the effects of the thermal poling by exploiting the intrinsic nonlinear properties of some 2D materials3, which are deposited inside the cladding holes of a twin-hole silica fiber. The materials we focused on are 2D Transition Metal Chalcogenide (2D TMDC) MoS2 and WS2 and the technique adopted to realize the deposition inside the cladding channels of a twin-hole step index silica fiber consists of a thermal decomposition process4 of the precursor ammonium tetrathiomolybdate (NH4)2MoS4 in 6% H2/Ar flow. The technique has allowed us to uniformly coat the two cladding channels for a length of ≈25 cm with a film nominally consisting in a bi-layer of the 2D materials. A Raman based analysis has been used to test the morphology of the coating. The fiber deposited with 2D materials was later thermally poled and periodically erased via exposure to UV light to reach the QPM condition at a wavelength of ≈1550 nm. The effective 𝜒(2) of the fiber was measured via SHG for both the deposited and the pristine fiber, showing an enhancement of the nonlinearity in favor of the deposited one. The phenomenon can be explained by the exploitation of a higher 𝜒(3) seen by the pump wave due to the presence of the 2D layer deposited inside the cladding holes and opens the possibility of exploiting the higher intrinsic material 𝜒(2), in case of a periodic patterning/synthesis of the TMDC.
Looking at the literature of the last years is evident that glass-based rare-earth-activated optical structures represent the technological pillar of a huge of photonic applications covering Health and Biology, Structural Engineering, Environment Monitoring Systems and Quantum Technologies. Among different glass-based systems, a strategic place is assigned to transparent glass-ceramics, nanocomposite materials, which offer specific characteristics of capital importance in photonics. These two-phase materials are constituted by nanocrystals or nanoparticles dispersed in a glassy matrix. The respective composition and volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. The key to make the spectroscopic properties of the glass-ceramics very attractive for photonic applications is to activate the nanocrystals by luminescent species as rare earth ions. From a spectroscopic point of view the more appealing feature of glass-ceramic systems is that the presence of the crystalline environment for the rare earth ions allows high absorption and emission cross sections, reduction of the non-radiative relaxation thanks to the lower phonon cut-off energy and tailoring of the ion-ion interaction by the control of the rare earth ion partition. Although the systems have been investigated since several years, chemical and physical effects, mainly related to the synthesis and to the ions interactions, which are detrimental for the efficiency of active devices, are subject of several scientific and technological investigations. Here we focus on fabrication and assessment of glass-ceramic photonic systems based on rare earth activated SiO2-SnO2 glasses produced by sol-gel route.
Thermal poling, a technique to create permanently effective second-order susceptibility in silica optical fibers, has a wide range of applications, such as frequency conversion, electro-optic modulation, switching and polarization-entangled photon pairs generation. After many works where a conventional configuration anode-cathode was used, in 2009 a new electrode configuration (double-anode) was adopted, which allows for a more temperature-stable depletion region formation and a higher value of effective Chi21, 2. In this work we demonstrate, via numerical simulations realized in COMSOL® Multiphysics, that in a double-anode configuration the effective value of Chi2 strongly depends on the relative position of the core with respect to the electrodes, requiring an accurate and precisely tailored geometry of the fiber, while in a single-anode configuration this value, for standard poling conditions1 is almost independent of the position of the core, offering the possibility of relaxing the manufacturing constraint of the fiber fabrication. We also demonstrate that, in the same experimental conditions, the maximum value of effective Chi2 induced by thermal poling in double-anode configuration is smaller than the one obtained in single-anode configuration for any position of the core in the range between the anodic surface and the geometric center of the fiber. Finally, we report the experimental observation of depletion region formation in a twin-hole fused silica fiber poled in single-anode configuration. Using a QPM SHG experimental set-up, we demonstrate that the value of Chi2 obtained in the single anode configuration is at least as large as for the double anode one.
Hollow Core Anti-resonant fibers allow for guidance of mid-infrared light at low attenuation and can be used for a variety of applications, such as high power laser transmission and gas sensing. Recent work has seen the integration of silicon into such fibers with linear losses potentially as low as 0.1dB/m. Due to the change in refractive index difference of silicon via for example the free carrier plasma dispersion effect, the prospect of an all optical modulator using such a fiber has been proposed. Here, further work has been undertaken on the integration of functional materials inside hollow core fibers via the deposition of the TMD semiconductor material MoS2, in its few-layered form. Through the use of a liquid precursor, a high quality MoS2 film can be deposited over 30cm length of fiber, as confirmed via Raman spectroscopy. The transmission spectra of these novel composite material hollow core fibers has also been analysed, showing additional loss of around 5dB/m, despite being only around 2nm in thickness. This implies that the refractive index of the integrated material is potentially able to modify the guidance properties of the fiber sample. We will present a comparison of the composite material hollow core fibers we have fabricated to date and discuss the prospects for using these novel waveguides in the active manipulation of light, including optical switching, sensing and frequency generation.
UV generation via four-wave-mixing (FWM) in optical microfibres (OMFs) was demonstrated. This was achieved by exploiting the tailorable dispersion of the OMF in order to phase match the propagation constant of the four frequencies involved in the FWM process. In order to satisfy the frequency requirement for FWM, a Master Oscillator Power Amplifier (MOPA) working at the telecom C-band was connected to a periodically poled silica fibre (PPSF), producing a fundamental frequency (FF) at 1550.3 nm and a second harmonic (SH) frequency at 775.2 nm. A by-product of this second harmonic generation is the generation of a signal at the third harmonic (TH) frequency of 516.7 nm via degenerate FWM. This then allows the generation of the fourth harmonic (FH) at 387.6 nm and the fifth harmonic (5H) at 310nm via degenerate and nondegenerate FWM in the OMF.The output of the PPSF was connected to a pure silica core fibre which was being tapered using the modified flame brushing technique from an initial diameter of 125 μm to 0.5 μm. While no signal at any UV wavelength was initially observed, as the OMF diameter reached the correct phase matching diameters, signals at 387.6 nm appeared. Signals at 310 nm also appeared although it is not phase matched, as the small difference in the propagation constant is bridged by other nonlinear processes such as self-phase and cross phase modulation.
Thermal poling, a technique to introduce effective second-order nonlinearities in silica optical fibers, has found widespread applications in frequency conversion, electro-optic modulation, switching and polarization-entangled photon pair generation. Since its first demonstration around 25 years ago, studies into thermal poling were primarily based on anode-cathode electrode configurations. However, more recently, superior electrode configurations have been investigated that allow for robust and reliable thermally poled fibers with excellent second order nonlinear properties [1, 2]. Very recently, we experimentally demonstrated an electrostatic induction poling technique that creates a stable second-order nonlinearity in a twin-hole fiber without any direct physical contact to internal fiber electrodes whatsoever [3]. This innovative technique lifts a number of restrictions on the use of complex microstructured optical fibers (MOF) for poling, as it is no longer necessary to individually contact internal electrodes and presents a general methodology for selective liquid electrode filling of complex MOF geometries. In order to systematically implement these more advanced device embodiments, it is first necessary to develop comprehensive numerical models of the induction poling mechanism itself. To this end, we have developed two-dimensional (2D) simulations of space-charge region formation using COMSOL finite element analysis, by building on current numerical models [4].
ZnSe and other zinc chalcogenide semiconductor materials can be doped with divalent transition metal ions to create a
mid-IR laser gain medium with active function in the wavelength range 2 - 5 microns and potentially beyond using
frequency conversion. As a step towards fiberized laser devices, we have manufactured ZnSe semiconductor fiber
waveguides with low (less than 1dB/cm at 1550nm) optical losses, as well as more complex ternary alloys with
ZnSxSe(1-x) stoichiometry to potentially allow for annular heterostructures with effective and low order mode corecladding
waveguiding.
Integration of semiconductor and metal structures into optical fibers to enable fusion of semiconductor optoelectronic
function with glass optical fibers is discussed. A chemical vapor deposition (CVD)-like process, adapted for high pressure
flow within microstructured optical fibers allows for flexible fabrication of such structures. Integration of semiconductor
optoelectronic devices such as lasers, detectors, and modulators into fibers may now become possible.
In this paper we report the fabrication of microstructured optical fibers (MOFs) metallic metamaterials using a bottom-up
processing technique for surface enhanced Raman scattering (SERS) applications. The inner walls of the silica-based
holey optical fiber have been modified by depositing granular films of Ag nanoparticles from its organometallic
precursor at high pressure condition. The resulting fibers demonstrate strong SERS effect when analyte molecules are
infiltrated within the MOF due to large electromagnetic field enhancement and long interaction length. The chemically
modified MOFs with 3D patterning represent an exciting platform technology for next generation SERS sensors and
plasmonic in-fiber integrated devices.
We have recently fabricated continuous semiconducting micro and nanowires within the empty spaces of highly ordered microstructured (e.g., photonic crystal or holey) optical fibers (MOF's). These systems contain the highest aspect ratio semiconductor micro- and nanowires yet produced by any method: centimeters long and ~100 nm in diameter. These structures combine the flexible light guiding capabilities of an optical fiber with the electronic and optical functionalities of semiconductors and have many potential applications for in-fiber sensing, including in-fiber detection, modulation, and generation of light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.