KEYWORDS: Temperature metrology, High temperature raman spectroscopy, Environmental sensing, Raman spectroscopy, Fiber optics sensors, Coating, Signal attenuation, Raman scattering, Temperature sensors, Fiber coatings, Temperature metrology, High temperature raman spectroscopy, Environmental monitoring, Optical fibers, Gold, Photodiodes, Fiber optics tests
Optical fiber temperature sensors using Raman effect are a promising technology for temperature mapping of nuclear power plant pipes. These pipes are exposed to high temperature (350 °C) and gamma radiations, which is a harsh environment for standard telecom fibers. Therefore metal coated fibers are to be used to perform measurement over 300 °C. Temperature variations can affect the attenuation of the metallic coated fiber before irradiation. The latter induces an extra attenuation, due to light absorption along the fiber by radiation-induced defects. The recombination of these defects can be strongly accelerated by the high temperature value. As backscattered Raman signal is weak it is important to test optical fibers under irradiation to observe how it gets attenuated. Different experiments are described in this conference paper: two in situ irradiation campaigns with different dose rates at, both ambient and high temperature. We observe that the tested off-the-shelf metallic coated fibers have a high attenuation under irradiation. We also noticed the fact that thermal annealing plays a massive role in the +300 °C temperature range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.