In this work, we show that great circles, the intersection of a plane through the origin and a sphere centered at the origin, can be perfectly recovered at their rate of innovation. Specifically, we show that 4K(8K − 7) + 7 samples are sufficient to perfectly recover K great circles, given an appropriate sampling scheme. Moreover, we argue that the number of samples can be reduced to 2K(4K − 1) while maintaining accurate results. This argument is supported by our numerical results. To improve the robustness to noise of our approach, we propose a modification that uses all the available information, instead of the critical amount. The increase in accuracy is demonstrated using numerical simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.