Optical diagnostics techniques are becoming important for technical art history (TAH) as well as for heritage conservation. In recent years, optical coherence tomography (OCT) has been increasingly used as a novel technique for the inspection of artwork, revealing the stratigraphy of paintings. It has also shown to be an effective tool for vanish layer inspection. OCT is a contactless and non-destructive technique for microstructural imaging of turbid media, originally developed for medical applications. However current OCT instruments have difficulty in paint layer inspection due to the opacity of most pigments. This paper explores the potential of OCT for the investigation of paintings with coloured grounds. Depth scans were processed to determine the light penetration depth at the optical wavelength based on a 1/e light attenuation calculation. The variation in paint opacity was mapped based on the microstructural images and 3D penetration depth profiles was calculated and related back to the construction of the artwork. By determining the light penetration depth over a range of wavelengths the 3D depth perception of a painting with coloured grounds can be characterized optically.
Optical coherence tomography (OCT) is a contactless and non-destructive testing (NDT) technique based on low-coherence interferometry. It has recently become a popular NDT-tool for evaluating cultural heritage. In this study, protective coatings on wood and their penetration into the wood structure were measured with a customized infrared fiber optic OCT instrument. In order to enhance the understanding of the OCT measurements of coatings on real wooden samples, an optimization of the measuring and analyzing methodology was performed by developing an averaging approach and by post-processing the data. The collected information was complemented by data obtained with hyperspectral imaging to allow data from local OCT A-scans to be used in mapping the coating thicknesses over larger areas.
Based on low coherence interferometry, a robust optical coherence tomography (OCT) system has been built. The system was used to monitor the growth of a delamination between the middle layers of a glass fiber composite under a static loading. Firstly specimens of the material used for the spar webs in wind turbines were prepared with an interlaminar crack from free edges. Then they were statically loaded by a customized tensile test stage to extend the delamination length and simultaneously scanned by the OCT system. To process the acquired data, an optimized signal processing algorithm was developed. The cross-sectional images clearly show the microstructure and the crack within the specimen. The 3D crack profiles show the application of OCT to determine the evolution of the crack structure inside the composite material during the propagation of the delamination, for the first time to the best of our knowledge.
Based on a customized time-domain optical coherence tomography (OCT) system, a series of signal processing approaches have been designed and reviewed. To improve demodulation accuracy and image quality, demodulation approaches such as median filter, Hilbert transform, and envelope detector were investigated with simulated as well as experimental data. Without noise, the Hilbert transform has the best performance, but after considering the narrow-band noise in the modulated signal, the envelope detector was selected as the ideal demodulation technique. To reduce noise and enhance image contrast, digital signal processing techniques such as a bandpass filtering and two-dimensional median filtering were applied before and after the demodulation, respectively. Finally with integration of the customized OCT setup and designed signal processing algorithms, aerospace materials, such as polymer coatings and glass-fiber composites, were successfully characterized. The cross-sectional images obtained clearly show the microstructures of the materials.
The increasing demand of the aerospace industry for new functional materials requires appropriate methods for quality
assessment. It is a new challenge nowadays to characterize materials with microstructure quickly, accurately, and nondestructively.
Optical coherence tomography (OCT) is a contactless and non-destructive technique for obtaining the
internal structure of turbid materials. In the past 20 years it has been continuously developed and nearly exclusively
applied for biomedical imaging of tissues while OCT-based methods for non-biomedical investigation tasks, e.g. within
the field of non-destructive testing for material inspection, are rarely reported. Therefore, here we demonstrate and
evaluate the suitability of OCT for the assessment of aerospace materials, e.g. coatings, and glass fibre composites. A
well-designed OCT system was built using a broad bandwidth light source with centre wavelength of 1550 nm. 2D
galvanometer scanners and an optical delay line incorporated in the system make cross-sectional imaging available.
Finally in combination with appropriate image processing, the thickness of thin films and the microstructure of materials
can be determined for quality assessment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.