This study evaluates the polarization state persistence of differently polarized light as they propagate through wet haze (PM2.5), in forward transmission. The investigated wavelength range extends from ultraviolet (UV) to short-wave infrared (SWIR) light. Using a polarization tracking Monte Carlo simulation for a range of particle sizes, wavelengths, relative refractive indices, and propagation distances, we find that both vertically-linearly- and right-handed-circularly-polarized light show superior polarization state persistence at a wavelength of 2.4μm. While the persistence increases gradually for increasing wavelengths, the study also reveals an anomaly, a persistence peak for wet haze with 2μm particles and 0.36μm wavelength. We further compare the polarization state persistence characteristics of vertically linearly and right circularly polarized light. Circular polarization persists better than linear for wet haze in wavelengths of 0.36, 0.543, and 1μm. While with the increase of wavelength and the decrease of particle size, linear polarization gradually persisted better than circular polarization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.