In this paper, we derive analytical formulas for the coherence length of a spherical wave propagating in oceanic turbulence based on the theory of second moments and power spectrum of homogeneous isotropic oceanic water. By equating the spherical wave coherence length solutions in oceanic and atmospheric turbulence, we express oceanic turbulence parameters using an equivalent structure constant employed in turbulent atmosphere. Our results provide a convenient analytical and numerical tool for analyzing beam propagation problems in oceanic turbulence and improve the theoretical basis for applications.
Vortex optical field is widely used in optical communication, particle control, quantum information and other fields due to its special physical structure. Coherence is an important inherent property of the beam, with unique advantages in resistance to speckle noise and atmospheric turbulence disturbance. In this paper, taking the cosine-Gaussian correlation function as an typical example, a mathematical model of the cosine-Gaussian-correlated Schell model vortex (CGCSMV) source is established. Using the extended Huygens-Fresnel integral, and the generalized anisotropic turbulence spectral model, we derive an analytical expression for the far-field cross spectral density function of a CGCSMV beam propagating in anisotropic turbulence. Lastly, we perform numerical simulations of the behaviors of the far-field spectrum of our beam. The results of this paper have some practical reference value for the new optical field regulation, optical communication and lidar system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.