The demanding science goals of future astrophysics missions currently under study for the 2020 Decadal Survey impose significant technological requirements on their associated telescopes. These concepts currently call for apertures as large as 15 m (LUVOIR), and operational temperatures as low as 4 Kelvin (OST). Advanced mirror technologies, such as those implementing a high degree of actuation at the primary, can help to overcome the challenges associated with these missions by providing in-situ wavefront correction capabilities. Active mirrors can also greatly reduce the cost/complexity associated with mirror fabrication as well as system I and T as on-orbit performance specifications can be achieved under a variety of test conditions (i.e. room/cryogenic temperatures, 0g/1g). JPL has significant experience in this area for visible/near-infrared applications, however future mission requirements create a new set of challenges for this technology. This paper presents design, analysis, and test results for lightweight silicon-carbide mirrors with integrated actuation capabilities. In particular, studies have been performed to test the performance of these mirrors at cryogenic temperatures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.