Light-absorbing black coatings are indispensable for many different optical applications. Thin-film interference coatings can be flexibly adapted to different wavelengths. To generate an effective (> 99 %) light absorption of an interference coating, the interference effect needs to be combined with a well-defined absorption of the layer’s material. On this basis, different black absorber coatings were developed and deposited on optical components for actual applications. A wideband black absorber for 400 -1000 nm wavelength on a space spectrometer slit, a bi-directional black coating for a single wavelength in the VIS, which can be wet-chemically etched for micro-patterning, and a black aperture for NIR and SWIR light on the exit face of a dispersion prism are presented.
Quantum communication is considered to be a key feature for secure communication e.g. between government organisations or other institutions with high security requirements. Therefore, the QuNET initiative was founded. It focuses on developing a quantum-secure German governmental agency network based on quantum key distribution (QKD). Free-space optical (FSO) links are a valuable part of infrastructure because they can be deployed temporarily, such as at summits or to bridge the last miles where there is no fiber infrastructure. In particular, high-throughput telescopes are of great importance as optical antennas for terrestrial networks or links between mobile nodes. The paper describes the development and manufacturing of an unobscured, afocal four-mirror metal telescope which is already tested for ground-based quantum communication. The off-axis system, operating with a full telescope aperture of 200 mm, a magnification of 20x, and a FOV (field of view) of 3.5 mrad and is designed to yield diffraction-limited performance for an operational wavelength of 810 nm and 1550 nm. The addressed wavefront error-target of the whole system amounts to 66 nm RMS (root mean square). The use case of the telescope implied an operational temperature range of -40 °C up to +50 °C. Therefore, an athermal system is realized using an aluminum-silicon alloy substrate material combined with a nickel-phosphorus polishing layer that allows to reach the required surface quality of the mirrors. To simplify the alignment of the telescope, its mechanical concept relies on a snap-together approach using two substrates with two optical mirrors on a common substrate, each. The manufacturing chain of these two so called mirror substrates is described in detail. That includes the CNC pre-manufacturing, ultra precision diamond turning and subsequent polishing steps. The resulting quality of the mirror substrates as well as of the telescope system is demonstrated by optical measurements using interferometric setups.
Joining technologies are of great importance for space-based applications. Given the very low environmental temperatures, high temperature differences, vacuum, and high acceleration loads during rocket launch, the (thermo-)mechanical requirements on the joining technologies are demanding. Plasma-activated bonding (PAB) and silicate bonding (SB) meet all these requirements. We developed PAB and SB to assemble an all-glass four-channel beam splitter. This development was initiated by a satellite mission concept, devoted to transient astronomy. Central part of this satellite mission is a novel beam splitter that divides the incoming telescope beam into four near infrared channels (λ = 800 − 1700 nm), by using a Kosters prism type design. As a final result, we built a demonstrator for the validation of the developed technological concept. Additional presentation content can be accessed on the supplemental content page.
Several telescopes like VISTA or the ELT are using or will use silver coatings, replacing aluminum (Al). The advantage of silver is a higher overall reflectivity, in particular around 825 nm. Yet, silver must be protected by covering layer(s), which lowering the reflectivity in the blue/UV region. Therefore, ESO completed a 2-year development with Fraunhofer IOF under the objective of extending the wavelength range of high reflectivity to shorter wavelengths without decreasing the coating durability. The developed coatings have been examined by standardized tests like scratching sensitivity, peeling, salt mist and H2S gas. The quasi-standard in silver coatings for telescope mirrors was developed for the Gemini observatory and it uses nickel chromium nitride (NiCrNx) as interlayer between silver and the protective top layer(s), finished by a hard silicon nitride (Si3N4) layer of ~ 15 nm thickness. We replaced the NiCrNx by aluminium oxide (AlOx) and it led to higher reflectivity but low durability towards the salt mist test. This test is relevant for many large telescopes because of their proximity to oceans, causing salty airborne dust. By replacing the NiCrNx by a ruthenium-based layer and by optimizing the protection, the objective of extending the wavelength range of high reflectivity to shorter wavelengths without decreasing the coating durability could be achieved.
For ground- and spaced based applications, Ag coated reflectors are indispensable because of their high reflectivity. The transport, assembling and storage of these reflectors takes a long time, before they are finally commissioned for the actual applications. To endure this period without a decrease of reflectivity, protective coatings with a final layer, which offers a high resistance to aqueous solutions and a low mechanical stress should be used. These criteria were taken into account for the selection of a final layer for a protected Ag-coating, which was applied for reflectors utilized in the CRIRES+- instrument (an IR spectrograph used at the VLT). Reactively sputtered Al2O3, SiO2 and Si3N4 layers were investigated with regard to these criteria. In aqueous (basic) solutions, the investigated Si3N4 layers are more stable than the SiO2 layers, and the SiO2 layers are more stable than the Al2O3 layers. This shows the influence of the intrinsic material properties. The mechanical stress of the sputtered layers depends on the deposition conditions and thus on the selected parameters. A Si3N4 layer with a high resistance to aqueous solutions also offers a low and stable mechanical stress. Therefore, the deposition-parameters which have been used for this layer were applied for sputtering the final layer of the protected Ag-coating for the reflectors.
Several mirrors for the upgrade of the CRyogenic high-resulution InfraRed Echelle Sprectrograph (CRIRES) at the Very Large Telescope, were manufactured by diamond turning and polishing. These mirrors will be used in the crossdispersion unit (CDU) and the fore optics of the instrument. For background level reasons, the operational temperature of the CDU is set to 65 K. Therefore, the flat and spherical mirrors used in the CDU, which are made of melt-spun aluminum alloy Al6061, had to be artificially aged, to improve the dimensional stability at cryogenic temperatures. After diamond turning, magnetorheological finishing (MRF) was used for a deterministic shape correction and to remove the turning marks of the RSA6061 mirrors. To reduce the micro-roughness, a further smoothing step was necessary. A micro-roughness between 1 nm RMS and 5 nm RMS as well as shape deviations below 35 nm RMS were achieved. The mirrors were coated by inline magnetron sputtering with a high-reflective gold layer or protected silver, respectively.
Order sorting filters had to be coated for the CRyogenic InfaRed Echelle Spectrograph upgrade (CRIRES+)-instrument, a high-resolution IR spectrograph to be set up at ESO’s Very Large Telescope in Chile. Therefore SiO2 was chosen as material with low refractive index. Si and Ge have been investigated as materials with high refractive index, whereby Si has been chosen for the application of the coating. Three types of high-pass filters were deposited with transmission bands starting at 0.96μm, 1.47μm and 2.9μm. These filters need to block effectively all wavelengths between 0.5 μm and the respective band. Therefore, in the blocking range, an optical density above four, or above three for the filter starting at 2.9 μm respectively, had to be achieved. The filter-coatings also needed to survive thermal cycling down to 65K while only introducing a small wave front error. The lower total thickness, compared to coatings consisting of other materials, and the low film-stress are favorable properties for coatings deposited onto prisms and other more complex optical components.
The optical system of the hyperspectral imager of the Environmental Mapping and Analysis Program (EnMAP) consists of a three-mirror anastigmat (TMA) and two independent spectrometers working in the VNIR and SWIR spectral range, respectively. The VNIR spectrometer includes a spherical NiP coated Al6061 mirror that has been ultra-precisely diamond turned and finally coated with protected silver as well as four curved fused silica (FS) and flint glass (SF6) prisms, respectively, each with broadband antireflection (AR) coating, while the backs of the two outer prisms are coated with a high-reflective coating. For AR coating, plasma ion assisted deposition (PIAD) has been used; the high-reflective enhanced Ag-coating on the backside has been deposited by magnetron sputtering. The SWIR spectrometer contains four plane and spherical gold-coated mirrors, respectively, and two curved FS prisms with a broadband antireflection coating. Details about the ultra-precise manufacturing of metal mirrors and prisms as well as their coating are presented in this work.
Metal mirrors are an attractive solution for scan mirrors working with ultra-short pulse lasers. Small mechanical inertia and a small mirror mass are required. Therefore, the mirrors have to be very stiff and a high quality optical surface has to be provided. This can be achieved with lightweight AlSi based mirrors with diamond-turned NiP polishable plating.
Different coating options were evaluated in order to provide the necessary high reflectivity and a satisfactory laser damage threshold for ultrashort laser pulses in the few ps to fs regime at λ = 1030 nm. High-reflective metal layers enhanced by dielectric HfO2/SiO2 stacks were found to be the most advantageous coating option due to their comparatively small thickness and measured damage thresholds above 1 J/cm2@8ps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.