Results are presented from formal flight and simulation experiments to test a new primary flight display (PFD)/refined multifunction display (MFD) system, with a computer generated dynamic pathway, as a viable means for a pilot to accurately and efficiently control and navigate an aircraft. For flight control, the PFD uses a computer generated highway-in-the-sky (HITS) pathway and a synthetic vision terrain image of the view outside the aircraft, with an overlay of all the essential flight technical data. For navigation, the MFD provides a moving map with a dynamic pathway to aid the pilot. The total PFD/MFD system provides a predictive method for flying an aircraft, as opposed to the reactive method associated with conventional needle and dial instruments. Fifteen low-to-average-experience subject pilots were selected to compare the PFD instrumentation system to a conventional instrumentation system. A non-precision global positioning system (GPS) area navigation (RNAV) approach to runway 20 at Wakefield Municipal Airport, VA, (AKQ) was used. The hypothesis was that the intuitive nature of the PFD instrumentation system will provide greater situational awareness, improved accuracy, and less pilot workload during flight in instrument meteorological conditions (IMC) compared to using conventional round dial instrumentation.
The results of this experiment show that an aircraft primary flight display (PFD) with a flight path superimposed on a synthetic vision system (SVS) terrain image demonstrates a viable means for a pilot to confidently and consistently control an aircraft while flying highly accurate precision approaches to a 200 foot decision height (DH). The pathway, depicted as a Highway-In-The-Sky (HITS) in the display, provides a predictive method, as opposed to the reactive method associated with conventional needle and dial instruments, for controlling an aircraft. The intuitive nature of the HITS/SVS architecture provides greater situational awareness, less pilot workload, and improved accuracy during instrument flying compared to the conventional instrument landing system (ILS) round dials and needles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.