An etching process is demonstrated for removing noble metal from microstructures to restore their original function after being characterized by scanning electron microscopy (SEM). Using neither aggressive acids nor high temperatures, the etching method gently removes gold/palladium alloys from complex three-dimensional microstructures, preserving their structural form. To explore the efficacy of the etching process, polymeric photonic crystals and monolithic microstructures were fabricated, metal coated, etched, and then structurally and optically characterized. Metal coating substantially diminishes the optical functional and transmission of the microstructures. SEM imaging performed throughout a series of metal sputtering, etching, and resputtering shows that the etching process does not significantly alter the form of a microstructure. Measurements of optical transmission using a scanned-optical-fiber system confirm that the etchant removes the metal and restores the optical properties of the microstructures.
Multi-photon lithography (MPL) remains among the handful of practical techniques that can be used to fabricate truly three-dimensional (3D) micro- and nanometer-scale structures with few processing steps. Although photopolymers remain the primary material system for MPL, others have been developed for creating functional structures in chalcogenide glasses and polymer-composites. Post-exposure processes have been developed for transforming a structure created by MPL into another material, such as a metal, semiconductor, or oxide glass. MPL has been used to create a wide range of functional nanophotonic devices. The full potential of MPL is apparent in its use to create spatially-variant lattices (SVLs). SVLs are a new class of nanophotonic device that is engineered to direct and control the flow of light in 3D. The devices are based on unit cells that control the propagation of light through the selfcollimation effect. These unit cells are spatially varied in orientation throughout an SVL so that light flows along a prescribed path within the device. The geometry and patterns of the unit cells within the lattice can also be varied to control other key properties, such as phase and polarization. SVLs and their fabrication by MPL opens a new route to 3D integrated photonics, and a myriad of other applications.
Multi-photon lithography (MPL) is a laser-based method for 3D printing nanoscale devices. Since its introduction in the late 1990's, researchers across many disciplines have made exciting contributions toward its development that include extending the range of material systems available for MPL, improving the achievable resolution, and using it to create functional devices for optics, MEMS, microfluidics, sensing, and bio-engineering. MPL has been used to create conventional micro-optics, like waveguides and micro-lenses. It has also been used to fabricate devices onto novel platforms, such as the tips of optical fibers, which greatly extends the functionality of conventional optics and the range of applications they may serve. MPL is unique among existing fabrication methods in its potential for creating truly 3D structures having arbitrary shape and complexity. This is particularly well illustrated in recent reports of using MPL to create spatially-variant photonic crystals (SVPCs). SVPCs unlock new physical mechanisms to control light, particularly using self-collimation to flow beams through exceptionally sharp bends, which cannot be achieved with waveguides and other technologies based on refraction. MPL and SVPCs open new routes to integrated photonics and opto-electronic circuits.
This work reports the fabrication of micron-scale spatially variant photonic crystals (SVPCs) and their use for steering light beams through turns with bending radius Rbend on the order of ten times the optical wavelength λ0. Devices based on conventional photonic crystals, metamaterials, plasmonics and transformation optics have all been explored for controlling light beams and steering them through tight turns. These devices offer promise for photonic interconnects, but they are based on exotic materials, including metals, that make them impractically lossy or difficult to fabricate. Waveguides can also be used to steer light using total internal reflection; however, Rbend of a waveguide must be hundreds of times λ0 to guide light efficiently, which limits their use in optical circuits. SVPCs are spatially variant 3D lattices which can be created in transparent, low-refractive-index media and used to control the propagation of light through the self-collimation effect. SVPCs were fabricated by multi-photon lithography using the commercially available photo-polymer IP-DIP. The SVPCs were structurally and optically characterized and found to be capable of bending light having λ0 = 1.55 μm through a 90-degree turn with Rbend = 10 μm. Curved waveguides with Rbend = 15 μm and 35 μm were also fabricated using IP-DIP and optically characterized. The SVPCs were able to steer the light beams through tighter turns than either waveguide and with higher efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.