We report on use of opto-electronic tweezers based sorting approach, termed as smart sweepers, for sorting the microscopic particles by using the Dielectrophoretic (DEP) force response of cells on applied a.c. bias frequency. The applied a.c. bias was kept in negative DEP region, close to the crossover frequency of one of the particles. A line shaped intensity pattern, generated by a cylindrical lens, was scanned across the mixture sample. The particles whose cross over frequency was close to the applied bias frequency, experienced negligible negative DEP(n-DEP) force. On the other hand, the other type of particle experienced large repelling force and were forced to move along the scanning direction of the line shaped intensity profile. We, as a proof of concept, demonstrated the working principle of opto electronic smart sweepers by sweeping out the polystyrene particles from a mixture consisting of polystyrene microspheres (PSM) and red blood cells (RBCs) and leaving RBCs in the region of interest.
We have investigated the dependence of the Raman spectrum of an optically trapped red blood cell (RBC) on the orientation of the cell, relative to the polarization direction of the Raman excitation beam. The Raman scattered light polarized parallel to the polarization direction of the excitation beam was observed to depend upon the orientation of the cell. In particular, the heme bands at ∼754 cm−1 and in the 1500 to 1700 cm−1 region were observed to become maximum when the cells’ equatorial plane was parallel to the excitation beam polarization direction and minimum when the cells’ plane was normal to the polarization direction. In contrast, no significant orientational dependence was seen in the Raman scattered light polarized orthogonal to the polarization direction of the excitation beam. Theoretical simulations carried out to investigate these observations suggest that inside the RBCs, the hemoglobin molecules must be present in an ordered arrangement, such that heme-porphyrin planes become preferentially orientated parallel to the RBCs’ equatorial plane.
Raman spectroscopy was performed on optically trapped red blood cells (RBCs) from blood samples of healthy volunteers (h-RBCs) and from patients suffering from P. vivax infection (m-RBCs). A significant fraction of m-RBCs produced Raman spectra with altered characteristics relative to h-RBCs. The observed spectral changes suggest a reduced oxygen-affinity or right shifting of the oxygen-dissociation curve for the intracellular hemoglobin in a significant fraction of m-RBCs with respect to its normal functional state.
We report results of a study on the use of Laguerre-Gaussian (LG) modes for optical trapping of spermatozoa. The results show that for a given trap beam power the first-order LG mode (LG01) leads to lower photodamage to the cells without compromising the trapping efficiency.
Near-infrared laser (785-nm)-excited Raman spectra from a red blood cell, optically trapped using the same laser beam, show significant changes as a function of trapping duration even at trapping power level of a few milliwatts. These changes in the Raman spectra and the bright-field images of the trapped cell, which show a gradual accumulation of the cell mass at the trap focus, suggest photoinduced aggregation of intracellular heme. The possible role of photoinduced protein denaturation and hemichrome formation in the observed aggregation of heme is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.