In the northwestern side of São Paulo state, irrigated crops are replacing natural vegetation, bringing importance for the
development and applications of tools to quantify the energy and water balances. Remote sensing together with
geostatistical tools are suitable for these tasks, being the surface temperature (T0) one of the radiation balance modelling
input parameters. However, due to the importance of high both spatial and temporal resolutions to capture the dynamics
of water and vegetation conditions, when the thermal bands are absent in several high-resolution satellites, applications on
water resources studies are limited. This paper aimed to test the Moving Average (MA) and the Nearest Point (NP)
geostatistical interpolation methods for estimate T0 with and without the Landsat 8 (L8) thermal bands by using a net of
agrometeorological stations. In the case of using the L8 satellite thermal radiances, the Plankꞌs low was applied to its bands
10 and 11. Without these bands, T0 was retrieved as residue in the radiation balance. Up scaling the satellite overpass T0
to daily scale resulted in a root mean square error (RMSE) of only 1.72 and 1.74 K when compared with values resulted
from the MA and NP applications with the residual method, respectively. However, the MA method seemed to be more
suitable than the NP one, being concluded that the coupled use of high spatial resolution images without a thermal band
and interpolated weather data throughout the MA method is suitable for large-scale energy and water balance studies.
Aiming to subsidize the rational water resources management, four Landsat 8 (L8) images along different conditions of the year 2014 were used for modeling the radiation and energy balances in the mixed agroecosystems inside a Brazilian reference semiarid area. The SAFER algorithm was applied to calculate the latent heat flux (λE); net radiation (Rn) was acquired by the Slob equation; ground heat flux (G) was considered a fraction of Rn; and the sensible heat flux (H) was retrieved by residue in the energy balance equation. For classifying the vegetation, the surface resistance algorithm (SUREAL) was used to estimate the surface resistance to the water fluxes (rs) with threshold values for rs. Clearly, one could see higher λE values from irrigated crops (ICs) than those for natural vegetation (NV) with some situations of heat horizontal advection. The respective λE, H, and G average ratios to Rn for the ICs ecosystem were 64% to 79%, 18% to 28%, and 3%, respectively. For the NV ecosystem, the corresponding fractions were 4% to 37%, 60% to 94%, and 4%, respectively. The algorithms proved to have strong sensibility to quantifying the large-scale energy and mass exchanges by applying L8 images in mixed agroecosystems of semiarid environments.
The region of Ilha Solteira, in the Northwestern of São Paulo State, has been undergoing significant changes in agricultural land use and cover since 2006, as pasture fields have been replaced by sugarcane crop. This drastic change can lead to a disturbance in the energy balance, affecting the local climate. The aim of this paper was to assess some parameters related to the energy balance of Ipê's watershed, that changed since no sugarcane cultivation in 2006 to 2,164 hectares in 2011, occupying 31% of the catchment area with this important energy crop for the economy and the environment of Brazil. This study was carried out using remote sensing combined with weather data and using the SAFER (Simple Algorithm for Retrieving Evapotranspiration) model applied in 9 Landsat images collected between 2003 and 2011. The results showed a wide variation between the components of energy balance and when considering only the sugarcane crop were verified the increase values of ETa (Actual Evapotranspiration), H/Rn (Sensible Heat Flux/Net Radiation), TS (Surface Temperature), Rl↑ (Emitted longwave), Rl↓ (Incidente longwave) and surface albedo after the sugarcane production over these years. On the other hand, the NDVI, λE/Rn (Latent Heat Flux/Net Radiation) and Rn values (data) decreased in the same period. Also there was satisfactory correlation between NDVI and ETa. The SAFER model showed satisfactory results for studies of energy balance applied in the Northwestern of São Paulo State.
The Cabeceira Comprida stream's watershed, located in Santa Fé do Sul, Brazil, is an agroecosystem with great demand of water for the population and agriculture. During the dry season the water demand exceeds the amount generated by the watershed. It is important to know the dynamics of the water above the ground to improve the water resources management. Ten Landsat 8 images were used combined with Northwestern São Paulo State Weather Network data under different thermohydrological conditions of the year 2014 to quantify actual evapotranspiration (ETa), biomass production (BIO) and water productivity (WP) based on ETa. Using the Simple Algorithm for Retrieving evapotranspiration (SAFER) for calculating ETa, the Monteith's radiation model was applied for estimating the BIO and for calculation of WP the ratio of BIO and ETa. The average pixels for ETa, BIO and WP ranged respectively from 0.38 ± 0.35 to 2.05 ± 0.76 mm day-1; 10.15 ± 12.19 to 71.61 ± 35.54 kg ha-1 day-1; 1.89 ± 0.76 to 3.88 ± 0.86 kg m-3. The lower values of ETa (0.38 mm day-1; DOY 220), BIO (10.15 kg ha-1 day-1; DOY 220) and WP (1.89 kg m-3; DOY 204) were obtained in winter, and highest values of ETa (2.05 mm day-1; DOY 364) and BIO (71.64 kg ha-1 day-1; DOY 364) in the summer and WP (3.88 kg m-3; DOY 92) in the autumn. The water productivity components can subsidize the monitoring of the agro-ecosystems, being a useful tool to quantify the annual variability of ETa and BIO.
The use of remote sensing satellite in conjunction with models and meteorological data enable the mapping of biophysical properties of agroecosystems with satisfactory accuracy. The main goal of this research was to determine the spatial-temporal agro-ecological indicators of water productivity in watersheds with different types of land use and occupation, using Landsat 8 images, agro-meteorological stations and application of Monteith and SAFER (Simple Algorithm for Retrieving Evapotranspiration) models to estimate the production biomass (BIO) and the actual evapotranspiration (ET), respectively. Incident global solar radiation (RS ↓) is observed seasonality of radiation during the year. Higher RS ↓levels happen during the first and the last four months, when the Sun is around its zenith positions in the study region. During the natural dry period in the region, the RS↓ is lower because winter solstice time for the Southern Hemisphere, this condition it is verified the reducing in the values of ET and BIO. Average values of biophysical properties for the study period were 0.54, 0.16 and 301 K for Normalized Difference Vegetation Index, albedo and surface temperature, respectively. The highest value of BIO was 105 kg ha-1d-1 and occurred in July 2013. The lowest value was 15.9 kg ha-1d-1 and occurred in October 2014. ET showed a value of 1.65 mm d-1 in the rainy period and 0.64 during the dry period in the study area. The highest average ET occurred in the irrigated area (June 2014), with a value of 1.89 mm d-1 and a maximum of 2.46 mm d-1. WP average for the evaluated period was 3.06 Kg m-3, with the largest value of 4.91 Kg m-3 in June 2013 and a minimum value of 2.45 Kg m-3 in September 2013.
In the northwestern side of the São Paulo state, Brazil, irrigated areas are expanding, because rainfall is not enough to supply the crop water requirements. Under the actual climate and land-use change scenarios, large-scale evapotranspiration (ET) and biomass production (BIO) acquirements are relevant. Eleven Landsat 8 images, from May 2013 to October 2014, were used together with a net of eight agrometeorological stations for modelling these water productivity (WP) parameters in the main agricultural growing irrigated areas inside three hydrological basins in this region. Some of these areas inside of each basin were highlighted for more in-depth WP analyses. The SAFER algorithm estimated the ratio of actual (ET) to reference (ET0) evapotranspiration and this ratio was used for both, to calculate ET and to include the soil moisture effects in the Monteith’s Radiation Use Efficiency (RUE) model. The highlighted agricultural growing regions were Paranapuã, Populina and Santa Rita d’Oeste in the Turvo/Grande basin; Rubinéia, Santa Fé do Sul, Suzanópolis and Ilha Solteira, in the São José dos Dourados basin; and Pereira Barreto and Sud Mennucci, in the Baixo Tietê basin. The highest averages of both ET (1.7 ± 0.9 mm d-1) and BIO (47 ± 31 kg ha-1 d-1) were for Ilha Solteira, while the lowest ones happened in Sud Mennucci (1.3 ± 0.7 mm d-1 and 40 ± 27). These ET and BIO ranges returned WP values varying from 2.2 ± 0.6 to 2.6 ± 0.8 kg m-3, with the higher end of this range happening in the Turvo/Grande hydrological basin. Considering the annual time-scale, crops will consume around 770, 828 and 786 mm yr-1 with the corresponding BIO values of 27, 26 and 25 t ha-1 yr-1, respectively in Turvo/Grande, São José do Dourados and Baixo Tietê. It was concluded that increments in agricultural irrigated areas should be stimulated in the northwestern side of the state, mainly in the first basin, to retrieve good yield with less water use.
Four Landsat 8 images were used together with a net of seven agro-meteorological stations for modelling the large-scale radiation and energy balances in the mixed agro-ecosystems inside a semi-arid area composed by irrigated crops and natural vegetation of the Petrolina municipality, Northeast Brazil, along the year 2014. The SAFER algorithm was used to calculate the latent heat flux (λE), net radiation (Rn) was acquired by the Slob equation, ground heat flux (G) was considered as a fraction of Rn and the sensible flux (H) was retrieved by residue in the energy balance equation. For classifying the vegetation into irrigated crops and natural vegetation, the SUREAL algorithm was applied to determine the surface resistance (rs) and threshold values for rs were used to characterize the energy fluxes from these types of vegetated surfaces. Clearly one could see higher λE from irrigated crops than from natural vegetation with some situations of heat horizontal advection increasing its values until 23% times larger than Rn, with respective average λE ranges of 5.7 (64% of Rn) to 7.9 (79% of Rn) and 0.4 (4% of Rn) to 4.3 (37% of Rn) MJ m-2 d-1. The corresponding H mean values were from 1.8 (18% of Rn) to 3.2 (28% of Rn) and 5.4 (60% of Rn) to 9.2 (94% of Rn) MJ m-2 d-1. Average G pixel values ranged from 0.3 to 0.4 MJ m-2 d-1, representing 3 and 4% of Rn for natural vegetation and irrigated crops, respectively.
Water productivity (WP) of various classes of soil usage from watersheds was estimated using the SAFER - Simple Algorithm For Evapotranspiration Retrieving - algorithm and the Monteith equation to estimate the parameters of biomass production (BIO). Monteith’s equation is used to quantify the absorbed photosynthetically active radiation (APAR) and Actual Evapotranspiration (ET) was estimated with the SAFER algorithm. The objective of the research is to analyze the spatial-temporal water productivity in watersheds with different uses and soil occupation during the period from 1996 to 2010, in conditions of drought and using the Monteith model to estimate the production of BIO and using the SAFER model for ET. Results indicated an increase of 153.2% in ET value during the period 1997-2010, showing that the irrigated areas were responsible for this increase in ET values. In September 2000, image of day of year (DOY) 210 showed high values of BIO, with averages of 80.67 kg ha-1d-1. In the year 2010 (DOY:177), the mean value of BIO was 62.90 kg ha-1d-1, with an irrigated area with a maximum value of 227.5 kg ha-1d-1. The highest incremental values of BIO is verified from the start of irrigated areas equal to the value of ET, because there is a relationship between BIO and ET. The maximum water productivity (WP) value occurred in June/2001, with 3,08 kg m-3, the second highest value was in 2010 (DOY:177), with a value of 2,97 kg m-3. Irrigated agriculture show the highest WP value, with maximum value of 6.7 kg m-3. The lowest WP was obtained for DOY 267, because of the dry season with condition of low soil moisture.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.