Scientific Research Corporation designed a Smart Multi-Function Color Display with Positive Pilot Feedback under the funding of an U. S. Navy Small Business Innovative Research program. The Smart Multi-Function Color Display can replace the obsolete monochrome Cathode Ray Tube display currently on the T-45C aircraft built by Boeing. The design utilizes a flat panel color Active Matrix Liquid Crystal Display and TexZec's patented Touch Thru Metal bezel technology providing both visual and biomechanical feedback to the pilot in a form, fit, and function replacement to the current T-45C display. Use of an existing color AMLCD, requires the least adaptation to fill the requirements of this application, thereby minimizing risk associated with developing a new display technology and maximizing the investment in improved user interface technology. The improved user interface uses TexZec's Touch Thru Metal technology to eliminate all of the moving parts that traditionally have limited Mean-Time-Between-Failure. The touch detection circuit consists of Commercial-Off-The-Shelf components, creating touch detection circuitry, which is simple and durable. This technology provides robust switch activation and a high level of environmental immunity, both mechanical and electrical. Replacement of all the T-45C multi-function displays with this design will improve the Mean-Time-Between-Failure and drastically reduce display life cycle costs. The design methodology described in this paper can be adapted to any new or replacement display.
The novel use of a Maximum Likelihood Decision-Directed (MLDD) synchronization scheme for a Wavelet Packet Modulation (WPM) System is discussed. MLDD synchronization allows symbol synchronization without edge detection. Multi-Carrier Modulation (MCM) techniques are being increasingly employed in military communication networks to combat time-dispersive and time-variant channel effects. One MCM method, Coded Orthogonal Frequency Division Multiplexing, has been particularly effective against multipath fading environments. Wavelet packet modulation has recently been introduced to address the need for improved transmission performance over channels with joint time and frequency interference components. Wavelet Packet Modulation's strength rests in a flexible, custom mapping of the desired signal on the communications channel at the transmitter to avoid a variety of a priori noise/interference patterns. The use of wavelet packet modulation on wireless channels has been hindered due to symbol synchronization not being achievable with conventional edge detection techniques. A MLDD receiver symbol timing recovery algorithm is presented here that should help expedite the adoption of WPM on wireless channels.
The F-22 'Raptor' is being developed and manufactured as multi-role fighter aircraft for the 'air dominance' mission. The F-22 team is led by Lockheed Martin, with Boeing and Pratt & Whitney as partners. The F-22 weapons system combines supersonic cruise, maneuverability, stealth, and an extensive suite of tightly integrated sensors to achieve a high level of lethality and invulnerability against current and projected threat systems such as fighter aircraft and surface to air missiles. Despite high automation of the complex systems installed in the F-22, the pilot is heavily tasked for air battle management. Response timelines are compressed due to supersonic cruise velocities. These factors challenge the Pilot Vehicle Interface (PVI) design. This paper discusses the team's response to these challenges, describing the physical cockpit layout, its controls and displays, and the hardware architecture, software tools, and development process used to mature the F-22 'Raptor' weapons system, including a review of Human Factors design considerations for F-22 displays.
This paper describes the selection of an optimized projection display system based upon the customer's requirements, the limitations imposed by current display technology, physical limitations, and system design considerations. While this paper portrays the specific results of a given case, a tandem cockpit aircraft, it is intended to also reveal numerous circumstances present in current visual display definition and a potential solution to some of them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.