An efficient method to make multi-spectral laser light having any selected pulsed duration in the range of 100 ns to 1 μs has been demonstrated in the laboratory. This laser system, based on the alexandrite tunable solid-state gain medium, which is tunable in its fundamental between 720 and 800 nm, was constructed near the gain maximum of 755 nm. A novel intracavity pulse-stretcher provides control of the pulse duration up to about 5 μs using the Pockels effect. In the demonstration prototype, however, the pulse duration was restricted to 500 ns to maintain the peak power needed for efficient nonlinear conversion. Following an amplification stage, Raman shifting in hydrogen gas was used to achieve efficient wavelength conversion to 1100 nm. The Raman shifted beam was frequency doubled to 550 nm using two BBO crystals arranged for walk-off compensation. The result was a convenient source of light whose spectral content, pulse duration, as well as other parameters, could be critically controlled.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.