The Space Interferometry Mission is an unique interferometer capable of
performing narrow and wide angle astrometry on a few thousands of stars, distributed
all over the Galaxy. It will be designed to achieve a single epoch precision of
10 micro arc seconds and an end of mission accuracy of 4 micro arc seconds in position and a similar
accuracy in parallax and proper motions. The presence
of confusing background and foreground stars might impose a limitation on the astrometric accuracy.
We estimate the expected single measurement position uncertainty of the targets,
owing to the presence of the confusing stars, from the knowledge of the
dispositions and the spectral energy distributions (SEDs) of the stars within and
just outside the field-of-view (FOV) of SIM. Our model also includes details of the instrumental
parameters and the measurement process. The estimated uncertainties can in turn be
used to correct the bias in the single measurement astrometric delay and, thus the
final astrometric accuracy can be improved. We estimate the offsets from the zero delay
position of the instrument and the projected separation of the components of binary stars
in an elemental observation, following an one-dimensional synthesis imaging
approach and a model fit to the absolute visibility data. These simulations help us
to explore the strategies that can be followed to extract the details of the field through
suitable model parameters in future.
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the near infrared to mid-infrared spectral region (3-8 microns). FKSI is a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to JWST. There are four key scientific issues the FKSI mission is designed to address. First, we plan to characterize the atmospheres of the known extra-solar giant planets. Second, we will explore the morphology of debris disks to look for resonant structures to find and characterize extrasolar planets. Third, we will observe young stellar systems to understand their evolution and planet forming potential, and study circumstellar material around a variety of stellar types to better understand their evolutionary state. Finally, we plan to measure detailed structures inside active galactic nuclei. We report results of simulation studies of the imaging capabilities of the FKSI with various configurations of two to five telescopes including the effects of thermal noise and local and exozodiacal dust emission. We also report preliminary results from our symmetric Mach-Zehnder nulling testbed.
The Stellar Imager (SI) is a far-horizon or "Vision" mission in the NASA Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 0.1 milliarcsec and thus baselines on the order of 500 meters. These requirements call for a large, multi-spacecraft (>20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution (several 100 times that of HST) will make it an invaluable resource for many other areas of astrophysics, including studies of AGN's, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. In this paper, we present an update on the ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region (3-8µm). FKSI is conceived as a scientific and technological precursor to TPF. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will answer key questions about extrasolar planets:
Σ What are the characteristics of the known extrasolar giant planets?
Σ What are the characteristics of the extrasolar zodiacal clouds around nearby stars?
Σ Are there giant planets around classes of stars other than those already studied?
We present preliminary results of a detailed design study of the FKSI. Using a nulling interferometer configuration, the optical system consists of two 0.5m telescopes on a 12.5m boom feeding a Mach-Zender beam combiner with a fiber wavefront error reducer to produce a 0.01% null of the central starlight. With this system, planets around nearby stars can be detected and characterized using a combination of spectral and spatial resolution.
The Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) is a space-based imaging and spectral ("double Fourier") interferometer with kilometer maximum baseline lengths for imaging. This NASA "vision mission" will provide spatial resolution in the far-IR and submillimeter spectral range comparable to that of the Hubble Space Telescope, enabling astrophysicists to extend the legacy of current and planned far-IR observatories. The astrophysical information uniquely available with SPECS and its pathfinder mission SPIRIT will be briefly described, but that is more the focus of a companion paper in the Proceedings of the Optical, Infrared, and Millimeter Space Telescopes conference. Here we present an updated design concept for SPECS and for the pathfinder interferometer SPIRIT (Space Infrared Interferometric Telescope) and focus on the engineering and technology requirements for far-IR double Fourier interferometry. We compare the SPECS optical system requirements with those of existing ground-based and other planned space-based interferometers, such as SIM and TPF-I/Darwin.
Ultimately, after the Single Aperture Far-IR (SAFIR) telescope, astrophysicists will need a far-IR observatory that provides angular resolution comparable to that of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and theoretical models for galaxy, star, and planet formation and evolution can be subjected to important observational tests. This paper updates information provided in a 2000 SPIE paper on the scientific motivation and design concepts for interferometric missions SPIRIT (the Space Infrared Interferometric Telescope) and SPECS (the Submillimeter Probe of the Evolution of Cosmic Structure). SPECS is a kilometer baseline far-IR/submillimeter imaging and spectral interferometer that depends on formation flying, and SPIRIT is a highly-capable pathfinder interferometer on a boom with a maximum baseline in the 30 - 50 m range. We describe recent community planning activities, remind readers of the scientific rationale for space-based far-infrared imaging interferometry, present updated design concepts for the SPIRIT and SPECS missions, and describe the main issues currently under study. The engineering and technology requirements for SPIRIT and SPECS, additional design details, recent technology developments, and technology roadmaps are given in a companion paper in the Proceedings of the conference on New Frontiers in Stellar Interferometry.
Astrometry in crowded fields is an important component of the science program of the Space Interferometry Mission (SIM). Resolving multiple point sources within the SIM beam, or imaging of complicated, extended source structures requires a (large) number of interferometer baselines. As the spacecraft design keeps evolving, the impact on various key projects needs to be studied. In this paper, we discuss the capabilities of the latest SIM design (with only two baselines available for science measurements) for measuring stellar proper motions in crowded fields. Using the nucleus of the
Andromeda Galaxy (M 31) as a case study, we quantify the roll angle increment needed to enable such measurements with the reduced SIM baseline set. In particular, we demonstrate that SIM can measure Keplerian motion of luminous stars around the 300 million solar
mass black hole in M 31, provided that the spacecraft roll angle can be chosen in increments of around 4 degrees or smaller.
An important step in the development of new concepts for imaging
interferometry in space is to obtain a clear view of the imaging
capabilities of the concept array for the intended set of target sources. This view needs to include an accurate rendition of the shape of the final point spread function, a photometrically accurate computation of the final images after restoration, and an evaluation of the image dynamic range for a realistic set of target image structures and brightness levels. An imaging simulator which provides for these features is a useful tool for the exploration of parameter space, and can support and help to guide the development phase of new space imaging interferometer concepts. The accomplishments and limitations of ground-based synthesis imaging both at radio and optical wavelengths provide the reference for an evaluation of
the expected contributions from new space mission concepts. This paper presents a general framework for imaging simulators, both in
Michelson and in Fizeau modes, and discusses briefly several implementations which we have created over the past few years. The first of these was designed to simulate the imaging capabilities of the (Michelson) Space Interferometry Mission (SIM) at optical
wavelengths, and a version has recently been completed for the (Fizeau) Stellar Imager (SI) Optical/UV interferometer concept; these two simulators are described in more detail elsewhere in this session. We are also developing simulators for an imaging mode of the Mid-IR interferometer version of the Terrestrial Planet Finder (TPF-IR), for the Submillimeter Probe for the Evolution of Cosmic Structure (SPECS, and its precursor mission SPIRIT), and for the Mid-IR concept system Fourier-Kelvin Stellar Interferometer (FKSI).
A number of proposed space missions for high resolution imaging at wavelengths ranging from IR to UV call for ``dilute-aperture'' Fizeau-mode interferometers. We present here details of a software tool developed for high fidelity simulations of images obtained with such instruments. We show simulated images from the Stellar Imager, a mission concept being developed by NASA's GSFC to obtain
high-resolution images of nearby stars in UV-optical wavelengths.
Using the simulator, we study the capability of the proposed SI design to image stellar surfaces. We use the simulator to explore
parameters of image quality such as resolution and dynamic range, and to evaluate proposed designs and the feasibility of science goals.
The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class
elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns,
for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations.
SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.
The Space Interferometer Mission (SIM) has considerably capabilities for imaging of complex targets with the resolution of a diffraction-limited 12 m telescope. The exact performance of SIM in this regard depends--among other factors--critically on its mechanical stability. For example, structural vibrations will lead to errors in the delay line position and thus in the derived phase of the incoming wavefront. Depending on the time constants of such vibrations and on whether or not they are random in nature, image reconstruction can be affected in different ways.
We present results from simulations of the imaging mode of the Space Interferometry Mission (SIM). In particular, we derive the SIM performance for imaging zodiacal disks around solar-type stars. We find that: Zodiacal disks like the one in our solar systems can not be imaged with SIM in a reasonable amount of time; However, SIM can detect and image systems with at least 100 times the solar dust content at distances between 100 pc and several kpc in about 5 hrs, provided that the nulling efficiency lives up to expectations; SIM performs better if the system is more distant because of the fading of the central star; The maximum distance for disk detection depends only on the size of the disk.
The Space Interferometry Mission (SIM) promises to revolutionize optical astrometry with its extraordinary astrometric accuracy of 4μas. The fringe phase stability required to provide this accuracy (≈ 0.14°) will also enable a unique and unprecedented capability for high-dynamic-range synthesis imaging in space at optical wavelengths
with an angular resolution of typically 10 milliarcseconds. We summarize the characteristics of the imaging mode of SIM and compare it to ground-based synthesis imaging instruments, which operate only at radio wavelengths. In some respects SIM is an optical version of the Westerbork Synthesis Radio Telescope in the Netherlands.
In 1991 the Astrophysics Division of NASA's Office of Space Science convened the Space Interferometry Science Working Group to consider in more detail the science goals of a space interferometer mission to do wide-angle astrometry at optical wavelengths. In addition, the working group considered the merits of alternative mission concepts for achieving those goals. We describe the current state of the adopted mission concept, and review the candidate astrometric science program. In addition to the main goal of precision astrometry, the concept interferometer has a limited capability for high- resolution imaging using rotational aperture synthesis. A phase A start on this mission has been made in 1996, an launch is planned for 2003.
The lower stratosphere in the polar regions offers conditions for observation in the near-infrared comparable to those obtained from space. We describe a concept for a 6-meter, diluted aperture, near-infrared telescope carried by a tethered aerostat flying at 12 km altitude, to serve as a testbed for future space astronomical observatories while producing frontier science.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.