Urbanisation contributed to the presence of urban heat island phenomenon, and aggravated urban heat island effect intensity with the improvement of urbanisation level. Overheat weather condition caused severe threat to human life and health, while green infrastructure including water bodies has been validated to be able to reduce urban land surface temperature in different extent. To examine the impact of green infrastructure on urban heat island effect in Harbin, with the aid of ENVI and geographic information system software, this paper retrieved seasonal Harbin land surface temperature from 2000 to 2015 using Landsat series and MODIS 8-day remote sensing data, and further computed surface urban heat island intensity(SUHII). Then, to build the quantitative relationship between green infrastructure fraction and urban heat island intensity applying regression analysis method. Finally, by means of ENVI-MET software, this article simulated urban heat island intensity change based on different green infrastructure scenarios. The results showed that, as far as administrative region of Harbin scale, surface urban heat island intensity both in summer and in winter reduced from 2000(6.55°C in summer, 4.15°C in winter) to 2015(2.6°C in summer, 0.47°C in winter), and SUHII in summer is higher than it in winter except 2005; Green infrastructure fraction is negative correlated with SUHII; Simulation result indicated that increase on green infrastructure would facilitate to mitigation of urban heat island effect. The result of this study would provide some help and advice for land use planning decision and urban construction in the future of Harbin.
In order to recognize the urban development status and select urban spatial development path, this paper, with the spatial analysis method of GIS and the spatial data of Remote Sense, simulates the Harbin urban construction land expansion with two scenarios, the development suitability and ecological importance. According to the landscape ecology method, the spatial patterns of two scenarios are compared and analyzed using patch number (NP), patch area ratio (PLAND), landscape shape index (LSI) and aggregation index (AI). The results show that the degree of fragmentation and dispersion of urban construction land patch in Harbin increases with the expansion intensity. And the degree of spatial fragmentation in ecological importance scenarios is lower than that of development suitability scenarios.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.