Galfenol (Fe-Ga) is a promising and mechanically robust magnetostrictive actuator material. However, due to its high conductivity, it needs to be in thin sheet form to avoid excessive eddy current losses. Work is underway to develop conventional rolling processes to produce large quantities of thin Galfenol sheet, while retaining a preferred <100> crystallographic texture to optimize magnetostrictive performance. Knowledge of high temperature polycrystalline plasticity is crucial to understanding formability and crystallographic texture evolution during rolling. The deformation behavior of polycrystalline Galfenol at high temperatures was studied. Preliminary results suggest that significant dynamic recovery and/or recrystallization occur during deformation, resulting in a random texture. In-situ neutron diffraction experiments are being developed to obtain qualitative and quantitative information on the high temperature plane strain deformation of Galfenol. These experiments will be used to identify the slip systems that contribute to plastic deformation, and their dependence on temperature. Simultaneously, models of large-scale polycrystal plasticity are being developed to predict internal strains and texture evolution during deformation, which will be validated against the data obtained from the neutron diffraction experiments. Ultimately, the models will be used to develop thermo-mechanical treatments to optimize texture evolution during rolling.
NiMnGa-based magnetic shape memory (MSM) alloys have attained magnetic-field-induced strains up to approximately 10%, making them very attractive for a variety of applications. However, for applications that require the use of an alternating magnetic field, eddy current losses can be significant. Also, NiMnGa-based MSM alloys' fracture toughness is relatively low. Using these materials in the form of particles embedded in a polymer matrix composite could mitigate these limitations. Since the MSM effect is anisotropic, the crystallographic texture of the particles in the composites is of great interest. In this work, a procedure for fabricating NiMnGa-based MSMA/elastomer composites is described. Processing routes for optimizing the crystallographic texture in the composites are considered.
In the current work, repeated mechanical and magnetic forces have been applied to Ni-Mn-Ga samples with different compositions and different thermomechanical histories in order to determine the combined effects of these parameters on the magnetic shape memory effects, especially the magneto-mechanical properties, of these alloys. The results demonstrate that prior history has strong influence on the twinning start stress and twinning strain. In addition, heat treatment of the materials seems to increase the amount of strain that can be obtained (up to the theoretical limit). Moreover, there is indication that prior heat treatment may also affect the martensite crystal structure that is formed during cooling. In addition, the dependence of martensitic transformation on composition and prior thermomechanical treatments was also studied by differential scanning calorimetry (DSC) analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.