This paper addresses the theory and finite element analysis of the transient large amplitude vibration response of thin composite structures and its control by integrated piezoelectric layers. A geometrically nonlinear finite shell element for the coupled analysis of piezolaminated structures is developed that is based on the first-order shear deformation (Reissner-Mindlin) hypothesis and the assumptions of small strains and moderate rotations of the normal. The finite element model can be applied to smart structures consisting of a composite laminated master structure with arbitrary ply lay-up and integrated piezoelectric sensor and actuator layers or patches attached to the upper and lower surfaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.