As the primary method for real-time image processing, a field-programmable gate array (FPGA) is widely used in binocular vision systems. Distortion correction is an important component of binocular stereo vision systems. When implementing a real-time image distortion correction algorithm on FPGA, problems, such as insufficient on-chip storage space and high complexity of coordinate correction calculation methods, occur. These problems are analyzed in detail in this study. On the basis of the reverse mapping method, a distortion correction algorithm that uses a lookup table (LUT) is proposed. A compression with restoration method is established for this LUT to reduce space occupation. The corresponding cache method of LUT and the image data are designed. The algorithm is verified on our binocular stereo vision system based on Xilinx Zynq-7020. The experiments show that the proposed algorithm can achieve real-time and high precision gray image distortion correction effect and significantly reduce the consumption of on-chip resources. Enough to meet the requirements of accurate binocular stereo vision system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.