Laser beam shaping is a widely used technique in many application areas, such as material processing, lithography, optical data storage, and medical procedures. In most cases a laser beam shaping system consists of conventional lenses with curved surfaces. However these lenses are bulky and their fabrication precisions are limited. In this work, we design and fabricate a lens for laser beam shaping using nanostructures. The lens is designed with traditional geometrical optical methods, using energy conservation and optical coordinate transformation algorithms. But instead of using curved surfaces to implement the lens design, we realize the designs with dielectric nanostructures. The lens is then fabricated using electron beam lithography to achieve a high precision. The fabricated lens has very low profile and is capable of fine tuning laser beams. The lens is then experimentally tested. In the experimental setup a laser beam is directed into a multimode fiber and the irradiance of the output beam irradiance profile is measured. Then the lens is placed in front of the multimode fiber and the outcome beam irradiance profile is measured again to test the effects of our laser beam shaping lens.
High power fiber lasers are proposed to be a better candidate than conventional solid-state lasers for industries such
as precision engineering since they are more compact and easier to operate. However, the beam quality generally
degrades when one scales up the output power of the fiber laser.
One can improve the output beam quality by altering the phase of the laser beam at the exit surface, and a promising
method to do so is by integrating specially designed nano-structures at the laser facets. In fact, this method was recently
demonstrated – by integrating gold concentric ring grating structures to the facet of a quantum cascade laser, one
observes significant improvement in the beam quality. Nevertheless, to improve the beam quality of high power fiber
lasers using the method mentioned above, the material of the nano-structures must be able to withstand high laser fluence
in the range of J/cm2.
In this work, we investigated the laser-induced damage threshold (LIDT) values of a suitable material for high
intensity fiber laser applications. Consequently, we demonstrated that the shortlisted material and the fabricated nanostructures
can withstand laser fluence exceeding 1.0 J/cm2.
KEYWORDS: Finite element methods, Fiber lasers, Data modeling, Thermal modeling, Interfaces, Thermography, High power fiber lasers, Coating, Cladding, Convection
A unique thermal model supported by experimental data has been successfully developed for the study of splicing joint,
which is the main weakness for >100s watt fiber laser. Surface temperature of the fiber was monitored at pumping
powers up to 230W under various cooling configurations. Temperature matching using a Finite Element Modeling
(FEM) software was achieved by adjusting the magnitude of the heat load. This allowed reliable characterization of
heating in splice joints and led to a precise prediction of the splice point temperature at higher powers. Excellent
agreement to within 2°C between modeling and experimental data was achieved. This thermal simulation methodology
is extended to study the splicing joint between passive fiber and active fiber under pumping power of 1.5kW. It shows
the maximum surface temperature of the active fiber is <100°C with a simple mechanical package.
We propose and demonstrate an effective and computationally compact Nelder-Mead simplex method for the design and modeling of cw cascaded Raman fiber lasers. The Nelder-Mead method is efficient for finding a local minimum of a function of several variables. We employ this classical powerful local descent algorithm to solve the multidimensional problem for the modeling of n'th-order cascaded Raman fiber lasers. With our proposed method, we investigate a linear cascaded Raman fiber laser with a pump wavelength of 1064 nm. The convergence of the proposed method solving the rate equations with boundary conditions is easily and correctly achieved. Our simulation results verify that the proposed method has good computational speed without losing simulation accuracy.
A tunable single polarization Yb3+-doped fiber laser using 45° tilted fiber Bragg grating is demonstrated. It generates
high degree of polarization (>99.86%) 1.06μm laser with 25 nm wavelength tuning range. This 45° tilted fiber Bragg
grating was fabricated using a zero-order-nulled phase mask. It has a near constant polarization-dependent loss (PDL)
across a wide wavelength range (1030 to 1080 nm).
We propose a novel approach to increase the repetition rate of all-fiber Q-switched laser. This proposed ring cavity fiber
laser consists of a fiber Bragg grating (FBG) functions as the wavelength discriminator and a chirped FBG Fabry-Perot
(FP) etalon serve as the transmission filter inside the ring cavity. The Q-switching operation is achieved by periodically
tuning of the FP etalon and hence modulating the loss of the cavity. A numerical model is developed to simulate this
type fiber ring laser with consideration of FBGs' spectra. Our simulation shows that the repetition rate of the Q-switched
pulse can be increased by multiple times that depend on the tuning range and the bandwidth of the chirped FBG FP
etalon. Experimentally we achieved 14 kHz Q-switched pulses under 3.5 kHz PZT modulation frequency.
In this paper, we report a compact mid-IR intracavity OPO, which has 4.1 W of 3.5-micron output from a non-critically phase-matched (NCPM), type II, KTiOAsO4 (KTA) optical parametric oscillator (OPO). This KTA OPO was pumped within the cavity of a Q-switched diode-pumped Nd:YALO laser operating at 10 kHz. We adopted the simplest configuration with a compact diode-pumped Nd:YALO module pumping the singly resonant KTA OPO. Besides 4.1 W of 3.5 um, 10.9 W of 1.5 micron and 11.3 W of 1-micron radiation were obtained simultaneously.
We demonstrated a 120-W side-pumped Tm:YAG laser with compound parabolic concentrators (CPC's) to couple the pump light into the laser rod. The optical-to-optical efficiency of this laser is 25.2% and the slope efficiency is 31.2%. At such high average power operation, we encountered severe thermal lensing in our Tm:YAG laser rod which prevented us from increasing the diode pump power due to the thermal rollover as the laser cavity become unstable. In this paper, Temperature was measured using IR camera. Temperature and stress distributions are obtained using finite element method. Those data can be used to estimate the fracture limit, the thermal lensing, the thermal distortion of the Tm:YAG laser and subsequently correct the thermal distortion using diffractive optical devices etc.
Recently, we have obtained a 23.5 W of 2-micrometers intracavity OPO output which is, to the best of our knowledge, the highest power from an intracavity OPO reported in the literature. To achieve such high average power 2-micrometers OPO output in a simple and compact laser system, we have adopted the diffusion-bonded walk-off compensated (DBWOC) KTP OPO pumped by the anisotropy Nd:YALO laser. The walk-off compensated twin KTP crystals reduce the aperture effect due to Poynting's walkoff in the critically phase-matched parametric generation. At the same time, it increases the acceptance angle for the nonlinear interaction, resulting in more efficient OPO conversion. In addition, the diffusion-bonded configuration eliminates the optical losses at the in/out facets and the need for alignment of the crystals. In order to low down the OPO threshold and increase the effective gain of KTP OPO, we bonded two pairs of crystals together. In this paper, we will compare the recent results of the 2-micrometers KTP OPO results with different pairs of DBWOC KTP OPO. With two pairs of DBWOC KTP device, we observed 78% higher 2-micrometers average output power compared to one pair of KTP device.
We present here a compact 120 W, continuous-wave (CW), diode-pumped Nd:YALO laser at 1079 nm. This linearly polarized output from the optically anisotropic Nd:YALO crystal is advantageous for pumping non-linear crystals. The 1 at% doped Nd:YALO laser rod, 4 mm diameter by 97 mm long, is cut along the b-axis, with both ends anti-reflection coated at 1079 nm and 1341 nm. It is water-cooled (16 degree(s)C) and side-pumped by 5 close-coupled CW diode arrays operating at 803 nm. We obtained 121 W output at the maximum diode pump power of 571 W. The optical slope efficiency is 60%. This is, to the best of our knowledge, the highest power obtained from a diode-pumped Nd:YALO laser. We have studied this thermal lensing at different diode pump powers in lasing and non-lasing configurations. The measured thermal lens decreased from 37.5 to 11 cm as the pump power increased from 185 to 542 W in the lasing configuration. In the non-lasing case, the corresponding thermal lens decreased from 35.5 to 9.5 cm. We have also successfully operated our Nd:YALO laser at 1341 nm. We obtained a maximum output of 60 W, to the best of our knowledge, the highest diode-pumped laser output at this wavelength.
We present 2 experiments on intracavity pumping of a KTiOPO4 (KTP) optical parametric oscillator (OPO) within a high power 1064nm Nd:YAG laser cavity producing multiwatt level 2-micron outputs. In such high power regime, the Nd:YAG rod laser suffers significant thermally-induced birefringence loss when it is linearly polarized. Hence in the first experiment, we present our intracavity KTP OPO pumped within the simple cavity of an unpolarized Nd:YAG laser. This simple configuration, with 1-micron high reflectors forming the Nd:YAG laser cavity and R equals 75 percent and 100 percent 2-micron mirrors forming the short flat-flat OPO cavity, delivered 6.5W of 2-micron output power at 3kHz Q-switched operation. Next we pumped our intracavity OPO within a more complex polarized Nd:YAG laser cavity. In this second experiment, we compensated for the thermally-induced birefringence loss in the Nd:YAG laser by using a re-entrant laser cavity with a Faraday rotator, and the OPO was pumped within one arm of this set-up. In this case, we also obtained approximately 6.5W of 2-micron output. FInally, studies of the temporal profiles of the 1 and 2-micron laser beams also revealed interesting multiple pulse features in such intracavity OPO output.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.