Soft X-ray free-electron lasers (FELs) have gained significant attention as a research tool in X-ray ultrafast spectroscopy due to their ultra-high pulse brightness and ultra-short duration. Combined with an independent optical laser to perform pump-probe experiments with time resolution has wide-ranging application value and can have great impact on ultrafast dynamics research in fields such as energy catalysis, solid state physics, materials science, and biology. However, the inherent temporal and spatial jitter of soft X-ray FEL pulses significantly limits the time resolution in these experiments due to the low level of synchronization between the two independent light sources. Here, we present a spatiotemporal coupling device suitable for soft X-ray FELs. The device uses a self-designed four-blade slit device which is suitable for ultra-high vacuum environments to complete the spatial coupling between the two foci of both the soft X-ray FEL and optical laser, reducing the negative effects caused by spatial jitter of soft X-ray FEL beam spots. Based on this, a wavefront-splitting scheme is used to reflect and separate approximately 30% of the soft X-ray FEL beam for arrival time diagnosis. Based on the principle of transient decrease in the reflectivity of semiconductor material surfaces induced by X-rays, precise time measurement is achieved on a shot-by-shot basis through spectral encoding. After experiments, the data is rearranged according to the arrival time delay between the two pulses, effectively increasing the time resolution of the pump-probe experiment to the femtosecond scale.
Transient structural information of matter can be obtained by time-resolved X-ray measurement, such as ultrafast X-ray diffraction (UXRD) and ultrafast X-ray absorption Spectroscopy (UXAS). A time-resolved ultrafast X-ray source is necessary for ultrafast X-ray spectroscopy measurements, such as XFEL or synchrotron radiation source. Because of the high cost of X-ray free electron laser (XFEL) and synchrotron radiation source, we designed a laboratory ultrafast plasma X-ray source driven by 800Hz high-energy laser. The X-ray pulse duration is shorter than 100fs. Copper was chosen as the target material of the source, and the expected photon flux can reach 107 photons/s. The target material can also be replaced by other common target materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.